Бездымный порох: история изобретения, состав, применение. Охотничий бездымный порох «Сокол»
Порох является неотъемлемым элементом, который используется для снаряжения патронов. Без изобретения этого вещества человечество никогда не узнало бы об огнестрельном оружии.
Но мало кто знаком с историей появления пороха. А его, оказывается, изобрели совершенно случайно. Да и потом долгое время применяли лишь для запуска фейерверков.
Появление пороха
Это вещество было изобретено в Китае. Точную дату появления дымного пороха, который еще называется и черным, не знает никто. Однако случилось это приблизительно в 8 в. до нашей эры. В те времена императоров Китая очень заботило собственное здоровье. Они хотели жить долго и даже мечтали о бессмертии. Для этого императоры поощряли труды китайских алхимиков, которые пытались открыть волшебный эликсир. Конечно, все мы знаем о том, что чудотворной жидкости человечество так и не получило. Однако китайцы, проявляя свое упорство, проводили множество опытов, смешивая при этом самые разные вещества. Они не теряли надежду исполнить императорский заказ. Но порой испытания заканчивались неприятными инцидентами. Один из них произошел после того, как алхимики смешали селитру, уголь и кое-какие иные компоненты. Неизвестный истории исследователь при испытании нового вещества получил пламя и дым. Изобретенную формулу записали даже в китайскую летопись.
В 11 в. было изобретено первое в истории пороховое оружие. Это были боевые ракеты, в которых порох вначале загорался, а затем происходил его взрыв. Использовали это пороховое оружие при осадах крепостных стен. Однако в те времена оно оказывало на противника больше психологическое, чем поражающее воздействие. Самым мощным оружием, которое придумали древние китайские исследователи, были глиняные ручные бомбы. Они взрывались и осыпали все вокруг осколками черепков.
Покорение Европы
Из Китая черный порох начал распространяться по всему миру. В Европе он появился в 11 в. Его привезли сюда арабские купцы, которые продавали ракеты для фейерверков. Применять это вещество в боевых целях стали монголы. Они использовали дымный порох при взятии ранее неприступных замков рыцарей. Монголами была использована довольно простая, но в то же время эффективная технология. Они делали под стенами подкоп и закладывали туда пороховую мину. Взрываясь, это боевое оружие с легкостью пробивало брешь даже в самых толстых заграждениях.
Получение пироксилина
Черным порохом вплоть до конца 19 в. заряжали мортиры и пищали, кремневые ружья и мушкеты, а также другое боевое оружие. Но при этом ученые не прекращали свои исследования по совершенствованию этого вещества. Примером тому могут служить опыты Ломоносова, который установил рациональное соотношение всех составляющих пороховой смеси. История помнит и о неудачной попытке замены дефицитной селитры на бертолетовую соль, которая была предпринята Клодом Луи Бертоле. Результатом этой замены послужили многочисленные взрывы. Бертолетовая соль, или хлорат натрия, оказалась очень активным окислителем.
Новая веха в истории пороходелия началась с 1832 г. Именно тогда французский химик А. Браконо впервые получил нитроклетчатку, или прироксилин. Это вещество является эфиром азотной кислоты и целлюлозы. В молекуле последней находится большое количество гидроксильных групп, которые и вступают в реакцию с азотной кислотой.
Свойства пироксилина были исследованы многими учеными. Так, в 1848 г. русскими инженерами А.А. Фадеевым и Г.И. Гессом было установлено, что это вещество по своей мощности в несколько раз превосходит изобретенный китайцами черный порох. Были даже попытки использования пироксилина для стрельбы. Однако они закончились неудачей, так как пористая и рыхлая целлюлоза имела неоднородный состав и горела с непостоянной скоростью. Попытки спрессовать пироксилин также закончились неудачей. Во время этого процесса вещество часто возгоралось.
Получение пироксилинового пороха
Кто изобрел бездымный порох? В 1884 г. французским химиком Ж. Вьелем на основе пироксилина было создано монолитное вещество. Это и есть первый в истории человечества бездымный порох. Для его получения исследователь использовал способность пироксилина увеличиваться в объеме, находясь в смеси спирта и эфира. При этом получалась мягкая масса, которую после прессовали, делали из нее пластины или ленты, а далее подвергали сушке. Основная часть растворителя при этом улетучивалась. Незначительный его объем сохранялся в пироксилине. Он продолжал функционировать как пластификатор.
Такая масса и является основой бездымного пороха. Ее объем в этом взрывчатом веществе составляет порядка 80-95 %. В отличие от ранее полученной целлюлозы пироксилиновый порох показал свою способность сгорать с постоянной скоростью строго по слоям. Именно поэтому его и до настоящего времени используют для стрелкового оружия.
Преимущества нового вещества
Белый порох Вьеля стал настоящим революционным открытием в области огнестрельного стрелкового оружия. И причин, объясняющих этот факт, было несколько:
1. Порох практически не давал дыма, тогда как используемое ранее взрывчатое вещество уже после нескольких произведенных выстрелов значительно сужало поле зрения бойца. От появляющихся клубов дыма при применении черного пороха могли избавить только сильные порывы ветра. Кроме того, революционное изобретение позволяло не выдавать позицию бойца.
3. В связи с большими характеристиками мощности, бездымный порох использовался в меньших количествах. Боеприпасы стали значительно легче, что позволило увеличить их количество при перемещении армии.
4. Снаряжение патронов пироксилином позволяло срабатывать им даже в мокром состоянии. Боеприпасы, в основе которых находился черный порох, обязательно должны были предохраняться от влаги.
Порох Вьеля прошел успешные испытания в винтовке Лебеля, которую тут же взяла на вооружение французская армия. Поспешили применить изобретение и другие европейские страны. Первыми из них были Германия и Австрия. Новое вооружение в этих государствах было введено в 1888 г.
Нитроглицериновый порох
Вскоре исследователями было получено новое вещество для боевого оружия. Им стал нитроглицериновый бездымный порох. Другое его название – баллистит. Основой такого бездымного пороха также являлась нитроцеллюлоза. Однако ее количество во взрывчатом веществе было снижено до 56-57 процентов. В качестве пластификатора в данном случае служил жидкий тринитроглицерин. Такой порох оказался очень мощным, и стоит сказать о том, что он до сих пор находит свое применение в ракетных войсках и артиллерии.
Пироколлодийный порох
В конце 19 в. свою рецептуру бездымного взрывчатого вещества предложил Менделеев. Русский ученый нашел способ, позволяющий получить растворимую нитроклетчатку. Ее он и назвал пироколлодием. Полученное вещество выделяло максимальное количество газообразных продуктов. Пироколлодийный порох прошел успешные испытания в орудиях различного калибра, которые были проведены на морском полигоне.
Однако не только в этом состоят заслуги Ломоносова перед военным делом и изготовлением пороха. В технологию производства взрывчатого вещества им было внесено важное усовершенствование. Ученый предложил обезвоживать нитроклетчатку не сушкой, а с помощью спирта. Это сделало производство пороха более безопасным. Кроме того, было повышено качество самой нитроклетчатки, так как при помощи спирта из нее вымывались менее стойкие продукты.
Современное использование
В настоящее время порох, который основан на нитроцеллюлозе, используется в современном полуавтоматическом и автоматическом оружии. В отличие от черного пороха он практически не оставляет в стволах орудий твердых продуктов сгорания. Это и позволило осуществлять автоматическую перезарядку оружия при использовании в нем большого количества подвижных механизмов и частей.
Что касается охотничьей среды, то здесь принято использовать пироксилиновую разновидность бездымного пороха. Только иногда находят свое применение нитроглицериновые виды, но особой популярностью они не пользуются.
Состав
Из каких компонентов состоит взрывчатое вещество, применяемое в охотничьем деле? Состав бездымного пороха не имеет ничего общего с дымным его видом. В основном он состоит из пироксилина. Его во взрывчатом веществе находится 91-96 процентов. Кроме того, охотничий порох содержит в себе от 1,2 до 5 % таких летучих веществ, как вода, спирт и эфир. Для увеличения стойкости во время хранения сюда включено от 1 до 1,5 процентов стабилизатора дифениламина. Замедляют горение наружных слоев пороховых зерен флегматизаторы. Их в бездымном охотничьем порохе находится от 2 до 6 процентов. Незначительную часть (0,2-0,3%) составляют пламегасящие присадки и графит.
Форма
Пироксилин, используемый для производства бездымного пороха, обрабатывается окислителем, основу которого составляет спиртоэфирная смесь. В конечном итоге получается однородное желеобразное вещество. Полученная смесь подвергается механической обработке. В результате получают зерненную структуру вещества, цвет которого варьируется от желто-бурого до чисто черного. Порой в рамках одной партии возможен различный оттенок пороха. Для придания ему однородного цвета производится обработка смеси порошкообразным графитом. Этот процесс позволяет и нивелировать слипаемость зерен.
Свойства
Бездымный порох отличает способность равномерного газообразования и горения. Это, в свою очередь, при изменении размера фракции позволяет обеспечить контроль и отрегулировать процессы горения.
Среди привлекательных свойств бездымного пороха отмечают следующее:
— низкую гигроскопичность и нерастворимость в воде;
— больший эффект и чистоту, чем у дымного аналога;
— сохранение свойств даже при повышенной влажности;
— возможность просушки;
— отсутствие дыма после выстрела, который производится с относительно негромким звуком.
Однако стоит иметь в виду, что белый порох:
— выделяет при выстреле угарный газ, который опасен для человека;
— негативно реагирует на изменения температур;
— способствует более быстрому износу оружия из-за создания высокой температуры в стволе;
— должен храниться в герметичной упаковке в связи с вероятностью его выветривания;
— обладает ограниченным сроком хранения;
— может быть пожароопасен при высокой температуре;
— не используется в оружии, в паспорте которого указывается на это.
Старейший российский порох
Этим взрывчатым веществом снаряжают охотничьи патроны с 1937 г. Порох «Сокол» обладает достаточно большой мощностью, соответствующей разработанным мировым стандартам. Следует отметить, что состав этого вещества был изменен в 1977 г. Это было сделано из-за установления более строгих правил к данному виду взрывчатых элементов.
Бездымный порох
Основу бездымных порохов составляет нитроклетчатка (пироксилин), обработанная различными растворителями, превращающими ее в пластическую массу. Растворители могут быть летучими (например, различные кислоты) или труднолетучими (например, нитроглицерин). Современные бездымные пороха к гладкоствольному оружию содержат летучие растворители.
В настоящее время наиболее распространенным бездымным порохом является “Сокол”, прототип которого начали выпускать в России еще в конце XIX века. В последние годы в продаже появились бездымные пороха “Барс” и “Сунар”, а ряд порохов, выпускавшихся в 50-70-х годах (“Фазан”, “Беркут” и др.), вышли из употребления.
Давление, создающееся в патроннике и каналествола при стрельбе патронами, заряженными бездымным порохом, выше, чем при стрельбе дымным порохом. При производстве ружей их испытание проводится именно этим порохом, что и подтверждается соответствующим клеймом на стволах. Все современныеружья рассчитаны на стрельбу бездымным порохом, но на руках у охотников еще остались ружья, не имеющие таких клейм. Стрелять из них бездымным порохом не следует.
Рецепт бездымного пороха: кто изобрел?
Конец девятнадцатого века ознаменовался изобретением новых модификаций пороха. Нужно уточнить, что на протяжении десятилетий изобретатели пытались усовершенствовать горючую смесь. Так в какой стране был изобретен порох без дыма?Ученые считают, что во Франции. Изобретатель Вьель сумел получить пироксилиновый порох, имеющий твердую структуру. Его испытания произвели фурор, преимущества нового вещества были сразу же отмечены военными. Так называемый бездымный порох имел огромную силу, не оставлял нагара и ровно горел. В России он был получен на три года позже, чем во Франции. Причем изобретатели работали независимо друг от друга.
Через несколько лет Альфред Нобель предложил использовать в изготовлении снарядов нитроглицериновый порох, обладающий абсолютно новыми характеристиками. В дальнейшем в истории пороха было множество модификаций и усовершенствований, но каждое из них было призвано сеять смерть на огромные расстояния.
До сегодняшнего дня военные изобретатели ведут серьезную работу по созданию совершенно новых видов пороха. Кто знает, возможно, с его помощью в будущем они кардинально изменят историю человечества еще не один раз.
Бездымные компоненты пороха [ править ]
Этот раздел требует дополнительных ссылок для проверки . Пожалуйста, помогите улучшить эту статью , добавив цитаты из надежных источников . Материал, не полученный от источника, может быть оспорен и удален. ( Январь 2021 г. ) ( Узнайте, как и когда удалить этот шаблон сообщения ) |
Составы пороха могут содержать различные энергетические и вспомогательные компоненты:
- Пропелленты
- Нитроцеллюлоза , энергетический компонент большинства бездымных порохов : 5
- Нитроглицерин , энергетический компонент двухосновных и трехосновных составов : 5
- Нитрогуанидин , компонент трехосновных составов : 5
- DINA (бис-нитроксиэтилнитрамин; динитрат диэтаноламина, DEADN; DHE) : 104
- Фивонит (2,2,5,5-тетраметилолциклопентанон тетранитрат, CyP) : 104
- ДГН ( динитрат диэтиленгликоля ) : 221
- Ацетилцеллюлоза : 318
- Централиты (симметричная дифенилмочевина — в основном диэтил или диметил) : 317–320 : 30
- Дибутилфталат : 5 : 30
- Динитротолуол (токсичный и канцерогенный) : 5 : 31
- Акардит (асимметричный дифенилмочевина) : 221
- орто-толил уретан : 174
- Полиэфирный адипинат
- Камфора (устаревшая) : 30
- Дифениламин : 302
- Вазелин : 296
- Карбонат кальция : 5
- Оксид магния : 221
- Бикарбонат натрия : 318
- метиловый эфир бета-нафтола : 174
- Амиловый спирт (устаревший) : 307
- Анилин (устаревший) : 308
- Металлическое олово и соединения (например, диоксид олова ) : 5 : 32
- Висмут металл и соединение (например, висмут трехокись , висмут субкарбонат , висмут нитрат , висмут Антимониды ); соединения висмута являются предпочтительными, поскольку медь растворяется в расплавленном висмуте, образуя хрупкий и легко удаляемый сплав
- Свинцовая фольга и соединения свинца, прекращенные из-за токсичности : 104
- Хлорид калия : 323–327
- Азотнокислый калий
- Сульфат калия : 5 : 32
- Битартрат калия ( гидротартрат калия) (побочный продукт производства вина, ранее использовавшийся французской артиллерией) : 322–327
- Воск
- Тальк
- Оксид титана
- Полиуретановые куртки поверх мешков с порошком в больших пистолетах
- Этилацетат , растворитель для производства сферического порошка : 296
- Канифоль , поверхностно-активное вещество, удерживающее форму зерна сферического порошка.
- Графит , смазка для покрытия зерен и предотвращения их слипания, а также для рассеивания статического электричества : 306
Физические вариации [ править ]
Патроны handloading порошки
Бездымный порох можно измельчить в маленькие сферические шарики или экструдировать в цилиндры или полосы с множеством форм поперечного сечения (полосы с различными прямоугольными пропорциями, цилиндры с одним или несколькими отверстиями, цилиндры с прорезями) с использованием растворителей, таких как эфир. Эти профили можно разрезать на короткие («хлопья») или длинные куски («шнуры» длиной много дюймов). Пушечный порох имеет самые крупные куски. [ необходима цитата ]
На свойства пороха большое влияние оказывают размер и форма его частей. Удельная площадь поверхности топлива влияет на скорость горения, а размер и форма частиц определяют удельную поверхность. Манипулируя формой, можно влиять на скорость горения и, следовательно, на скорость роста давления во время горения. Бездымный порох горит только на поверхности деталей. Более крупные куски горят медленнее, а скорость горения дополнительно регулируется огнезащитными покрытиями, которые немного замедляют горение. Задача состоит в том, чтобы отрегулировать скорость горения таким образом, чтобы на метательный снаряд оказывалось более или менее постоянное давление, пока он находится в стволе, чтобы получить максимальную скорость.Перфорация стабилизирует скорость горения, потому что по мере того, как внешняя часть горит внутрь (таким образом сокращая площадь поверхности горения), внутренняя часть горит наружу (таким образом увеличивая площадь поверхности горения, но быстрее, чтобы заполнить увеличивающийся объем ствола, представленный отходящими снаряд). : 41–43 Быстро горящие порохы для пистолетов получают путем экструдирования форм с большей площадью, таких как хлопья, или путем сплющивания сферических гранул. Сушка обычно проводится под вакуумом. Растворители конденсируются и используются повторно. Гранулы также покрыты графитом, чтобы искры статического электричества не вызывали нежелательного возгорания. : 306
Пропелленты с более быстрым сгоранием создают более высокие температуры и более высокие давления, однако они также увеличивают износ стволов орудий. [ необходима цитата ]
Характеристики пороха[ | ]
Основными характеристиками пороха являются: теплота горения Q — количество тепла, выделяемое при полном сгорании 1 килограмма пороха; объём газообразных продуктов V, выделяемых при сгорании 1 килограмма пороха (определяется после приведения газов к нормальным условиям); температура газов Т, определяемая при сгорании пороха в условиях постоянного объёма и отсутствия тепловых потерь; плотность пороха ρ; сила пороха f — работа, которую мог бы совершить 1 килограмм пороховых газов, расширяясь при нагревании на Т градусов при нормальном атмосферном давлении.Характеристики основных типов порохов
Физические вариации [ править ]
Патроны handloading порошки
Бездымный порох можно измельчить в маленькие сферические шарики или экструдировать в цилиндры или полосы с множеством форм поперечного сечения (полосы с различными прямоугольными пропорциями, цилиндры с одним или несколькими отверстиями, цилиндры с прорезями) с использованием растворителей, таких как эфир. Эти профили можно разрезать на короткие («хлопья») или длинные куски («шнуры» длиной много дюймов). Пушечный порох имеет самые крупные куски. [ необходима цитата ]
На свойства пороха большое влияние оказывают размер и форма его частей. Удельная площадь поверхности топлива влияет на скорость горения, а размер и форма частиц определяют удельную поверхность. Манипулируя формой, можно влиять на скорость горения и, следовательно, на скорость роста давления во время горения. Бездымный порох горит только на поверхности деталей. Более крупные куски горят медленнее, а скорость горения дополнительно регулируется огнезащитными покрытиями, которые немного замедляют горение. Задача состоит в том, чтобы отрегулировать скорость горения таким образом, чтобы на метательный снаряд оказывалось более или менее постоянное давление, пока он находится в стволе, чтобы получить максимальную скорость.Перфорация стабилизирует скорость горения, потому что по мере того, как внешняя часть горит внутрь (таким образом сокращая площадь поверхности горения), внутренняя часть горит наружу (таким образом увеличивая площадь поверхности горения, но быстрее, чтобы заполнить увеличивающийся объем ствола, представленный отходящими снаряд). : 41–43 Быстро горящие порохы для пистолетов получают путем экструдирования форм с большей площадью, таких как хлопья, или путем сплющивания сферических гранул. Сушка обычно проводится под вакуумом. Растворители конденсируются и используются повторно. Гранулы также покрыты графитом, чтобы искры статического электричества не вызывали нежелательного возгорания. : 306
Пропелленты с более быстрым сгоранием создают более высокие температуры и более высокие давления, однако они также увеличивают износ стволов орудий. [ необходима цитата ]
Литература
- Мао Цзо-бэнь. Это изобретено в Китае / Перевод с китайского и примечания А. Клышко. — М. : Молодая гвардия, 1959. — С. 35—45. — 160 с. — 25 000 экз.
- Джек Келли. Порох. От алхимии до артиллерии. История вещества, которое изменило мир = Gunpowder. Alchemy, Bombards, & Pyrotechnics: The History of the Explosive that Changed the World. — КоЛибри, 2005. — 344 с. — 5000 экз. — ISBN 5-98720-012-1.
- Чельцов И. М. Порох // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб. , 1890—1907.
- Buchanan, Brenda J., ed. (2006), , Aldershot: Ashgate, ISBN 0-7546-5259-9, http://muse.jhu.edu/login?auth=0&type=summary&url=/journals/technology_and_culture/v049/49.3.bachrach.html>
- Needham, Joseph (1986), Science & Civilisation in China, vol. V:7: The Gunpowder Epic, Cambridge University Press, ISBN 0-521-30358-3
Неустойчивость и стабилизация [ править ]
Нитроцеллюлоза со временем ухудшается, давая кислотные побочные продукты. Эти побочные продукты катализируют дальнейшее разрушение, увеличивая его скорость. Выделенное тепло в случае хранения пороха в больших количествах или слишком больших блоков твердого топлива может вызвать самовоспламенение материала. Одноосновные нитроцеллюлозные пропелленты гигроскопичны и наиболее подвержены разложению; двухосновные и трехосновные порохы имеют тенденцию к более медленному износу. Для нейтрализации продуктов разложения, которые в противном случае могли бы вызвать коррозию металлов патронов и стволов, в некоторые составы добавляют карбонат кальция . [ необходима цитата ]
Чтобы предотвратить накопление продуктов порчи, добавляют стабилизаторы . Дифениламин — один из наиболее часто используемых стабилизаторов. Нитрированные аналоги дифениламина, образующиеся в процессе стабилизации разлагающегося порошка, иногда используются в качестве самих стабилизаторов. : 28 : 310 Стабилизаторы добавляются в количестве 0,5–2% от общего количества препарата; более высокие количества имеют тенденцию к ухудшению его баллистических свойств. Количество стабилизатора истощается со временем. Пропелленты, находящиеся на хранении, следует периодически проверять на количество оставшегося стабилизатора, так как его расход может привести к самовоспламенению пороха. [ необходима цитата ]
Нитроглицерин и хлопок [ править ]
Нитроглицерин был синтезирован итальянским химиком Асканио Собреро в 1847 году. : 195 Впоследствии он был разработан и изготовлен Альфредом Нобелем в качестве промышленного взрывчатого вещества, но даже тогда он был непригоден в качестве метательного взрывчатого вещества: несмотря на его энергетические и бездымные свойства, он детонирует. вместо того , чтобы плавно сгорать , из-за чего ружье более подвержено разрушению, чем выбрасывается из него снарядом. Нитроглицерин также очень чувствителен, что делает его непригодным для переноски в условиях боя.
Важным шагом вперед было изобретение пушечного хлопка , материала на основе нитроцеллюлозы, немецким химиком Кристианом Фридрихом Шёнбейном в 1846 году. Он продвигал его использование в качестве взрывчатого вещества : 28 и продал права на производство Австрийской империи . Гункоттон был сильнее пороха, но в то же время был несколько более нестабильным. Джон Тейлор получил английский патент на пушистый хлопок; и John Hall & Sons открыли производство в Фавершеме .
Интерес англичан угас после того, как в 1847 году взрыв разрушил фабрику в Фавершаме. Австрийский барон Вильгельм Ленк фон Вольфсберг построил два завода по производству артиллерийского топлива, но это тоже было опасно в полевых условиях, и орудия, которые могли стрелять тысячами выстрелов с использованием черного пороха, могли достичь цели. срок их службы истекает после нескольких сотен выстрелов из более мощного ружья. Стрелковое оружие не могло выдержать давления, создаваемого пушкой.
После того, как одна из австрийских фабрик взорвалась в 1862 году, Thomas Prentice & Company начала производство пушечного хлопка в Стоумаркете в 1863 году; и химик британского военного ведомства сэр Фредерик Абель начал тщательное исследование на заводе Waltham Abbey Royal Gunpowder Mills, ведущее к производственному процессу, который удалял примеси в нитроцеллюлозе, что делало ее более безопасным в производстве и стабильным продуктом, более безопасным в обращении. Абель запатентовал этот процесс в 1865 году, когда взорвалась вторая австрийская хлопковая фабрика. После взрыва фабрики Stowmarket в 1871 году Waltham Abbey начала производство пушечного волокна для торпедных и минных боеголовок. : 141–144
Разновидности
Порох уже давно используется не только в военном деле. В свое время успели оценить его пользу и в других областях, в том числе и для охоты. Охотники должны быть отлично знакомы с тем, какие виды пороха использовать, и какой порох лучше для охоты в тех или иных условиях.
Дымный
История пороха началась именно с создания дымного, а остальные виды пороха были изобретены значительно позже.
Вещество имеет зернистую структуру. Размер зерна оказывает влияние на качество смеси, от которого зависит скорость и сила полета пули.
В зависимости от размера фракции смесь получает номер по возрастанию от самого крупного до наиболее мелкого:
- крупный (0.8 – 1.25 мм);
- средний (0.6 – 0.75 мм);
- мелкий (0.4 – 0.6 мм);
- очень мелкий (0.25 – 0.4 мм).
Для определения качества можно руководствоваться некоторыми характеристиками. Дымный порох должен быть равномерного черного или слегка коричневого цвета, без вкраплений посторонних оттенков. Фракции отличаются полированной поверхностью и отсутствием налета белесого оттенка, посторонних примесей. Если аккуратно раздавить зерно между пальцами, то оно не рассыпается, а лишь раскалывается на несколько отдельных частичек.
Если дымный порох пересыпать, то в процессе он не должен образовывать комков или оставлять пыль. В противном случае его применение может быть опасным для самого охотника: пыль воспламеняется много быстрее основной массы смеси, и может спровоцировать взрыв в стволе ружья, повредив его.
Из плюсов следует отметить:
- долгое хранение без потери свойств, если соблюдать режим влажности;
- низкая стоимость по сравнению с другими видами;
- быстрая воспламеняемость, даже если в патроне слабый капсюль;
- слабая зависимость от качества пыжей, завальцовки, плотности заряжения;
- слабая чувствительность к перепадам температурного режима;
- малое воздействие пороховых газов на ствол.
Разумеется, существуют и минусы:
- полная потеря свойств при намокании;
- загрязнение ствола оружия нагаром;
- густой дым при выстреле;
- невозможность использования в полуавтоматическом оружии;
- относительная невысокая скорость полета дроби;
- сообщает сильную отдачу при выстреле и сопровождает его громким звуком.
Вещество легко воспламеняется, а горение большой массы провоцирует мощный взрыв. По силе воздействия дымный уступает своему бездымному собрату примерно в три раза.
Бездымный
Данная разновидность была изобретена значительно позднее своего старшего «коллеги по оружию». При этом бездымный порох, он же коллоидальный, значительно отличается от дымного своими свойствами, составом и характеристиками, и отличается собственными преимуществами и недостатками использования.
В охотничьей среде принято пользоваться пироксилиновой разновидностью коллоидального вещества. Изредка используется нитроглицериновые разновидности, но они не очень популярны.
Получается бездымный порох в результате обработки пироксилина окислителем на основе спиртоэфирной смеси. В качестве чистого итога формируется однородное вещество, похожее на желе. Полученную смесь подвергают механической обработке, в результате получается зерненая структура вещества.
Цвет может варьироваться от желто-бурого до полностью черного. При этом в рамках одной партии допустим неординарный оттенок смеси. Для получения более однородного цвета применяется процесс графитовки – обработка порошкообразным графитом, что также нивелирует слипаемость зерен.
- нерастворимость в воде, низкая гигроскопичность;
- чище и эффективнее дымного аналога;
- при отсыревании не теряет свойств полностью;
- при высыхании полностью восстанавливает свойства, возможность просушки при температуре до 34°С;
- отсутствие дыма при выстреле;
- относительно негромкий звук выстрела.
- пары содержат угарный газ, опасный для человека;
- негативная реакция на колебания температуры;
- более быстрый износ оружия за счет высокой температуры внутри ствола;
- необходимость герметичного хранения в определенных условиях, в противном случае происходит выветривание;
- ограниченный срок хранения;
- очень высокая температура горения, воспламенение без взрыва – опасность пожаров;
- нельзя применять в ружьях, паспорт которых запрещает его использование.
Навеска пороха Сунар
Теперь рассмотрим, какие навески чаще всего используются для этой марки:
Навеска пороха Сунар указана на упаковкеНавеска пороха Сунар для боеприпасов 12 калибра
- Сунар-32 – используется при навеске в 1,9 гр. на 32 гр. заряда;
- Сунар-35 – используется при навеске в 2,1 гр. на 35 гр. заряда;
- Сунар-42/1,2,3 – используется при навеске в 2,3; 2,45; 2,35; гр. на 40-42 гр. заряда;
- Сунар-магнум 42используется при навеске в 2,2 при стрельбе «полумагнумом» на 40-42 гр.; используется при навеске на «магнум» 2,4 гр. на 46 гр. заряда;
Навеска пороха Сунар для 16 калибра:
- Сунар-35 – используется при навеске в 1,7 гр. на 29-30 гр. заряда;
- Сунар-42/1 – используется при навеске в 1,2гр. на 40 – 43 гр. заряда;
- Сунар-42/2,3 – используется при навеске в 2,1 гр. на 30-32 гр. заряда;
Навеска пороха Сунар для 20 калибра:
- Сунар-35 – используется при навеске в 1,5 гр. на 24-35 гр заряда;
- Сунар-42/1,2,3 – используется при навеске в 1,8; 1,9; 1,8; гр. на 25-28 гр. заряда.
Не забывайте о том, что необходимо четко соблюдать рекомендации, указанные производителем в инструкции навески порохов. Только при условии соблюдения вышеназванных пропорций достигаются лучшие баллистические результаты, и минимален риск повреждения канала ствола или плавления дроби. Кроме того, необходимо соблюдать пропорции в связи с тем, что неправильная навеска заметно сказывается на бое. К тому же порох требует более плотной засыпки.
Дымный порох: Состав, виды пороха и способ проверки
Истиорически чёрный порох (он же дымный порох) состоял из трёх компонентов — селитры, серы и угля. На протяжении времён пропорции варьировались в весьма широких, надо сказать, показателях. Например, в средневековой Франции пропорции были 2/1/1. И ничего, ружья кое-как стреляли, задача выполнялась. И лишь с 1650 года был установлен хоть какой-то нормальный стандарт.
Дымный порох и разновидности
Условно говоря, современный порох делится на дымный и бездымный. Дымный порох — прямой потомок той самой смеси, что придумали ещё китайцы. Бездымный порох — логичное развитие идеи дымного пороха — при его горении выделяется газ, а не сажа (твёрдые частицы, т.е. дым), более мощный, но и более чувствительный к внешним условиям.
И дымный порох, и бездымный существовали и существуют в довольно интересных разновидностях, зависящих преимущественно от качества и количества угля. И вот это реально интересный момент.
Если стандартные дрова отжигать при высокой температуре — примерно 350-450 градусов, то мы получим чёрный уголь. Легко рассыпается, чёрно-синеватый на сколе, горит без пламени. И его будет довольно мало. Из него выйдет чёрный порох.
Если стандартные дрова отжигать при температуре 280 — 320 градусов, то получим бурый уголь. Хуже измельчается, красноватый на сколе, при горении даёт пламя и голубоватый дым с красными искрами. Его раза в 2 больше. Сырье для бурого пороха.
Если стандартные дрова отжигать при 150-180 градусах, то получим шоколадный уголь. Почти не крошится, жирный на ощупь и в ещё больших количествах. Что характерно, остывать он должен без доступа воздуха.
Бурый и шоколадный порох используют больше в артиллерии, поскольку он значительно мощнее. Серьёзно, это задротство с отжигом того стоит.
Есть ещё особый бессерный порох, в котором, как вы могли догадаться, серы нет совсем. И что характерно, для бессерного пороха как раз и применяли шоколадный уголь. Потому что он и так держится и не рассыпается — крупинки могут давиться, но не ломаются.
А ещё есть белый порох — он как раз бездымный. Это особое извращение, которое сейчас разве что в ракетном деле используют. Состав — 75 процентов калийной селитры, 25 процентов… сахара. Состав стабильный, горит хорошо, детонирует как надо.
И желтый порох. 55% селитры, 18% серы и 27% безводного поташа или карбоната калия. Штука дороже чем чёрный порох, готовится сложнее, более требовательна к технике безопасности, но крайне перспективная за счёт стабильности и мощности.
Метод определения вида пороха и его качества
Существует довольно наглядный способ проверки пороха, позволяющий определить и его вид, и предназначение, и возможную порчу. Нам понадобятся порох, небольшая полоска бумаги и секундомер.
Берём бумагу и складываем её пополам — получается такой «желобок». Отмеряем на нем длину в 5 см, ставим две полосочки. И засыпаем между ними 0,25 грамм пороха. Поджигаем конец бумаги, а когда огонь дойдёт до пороха — включаем секундомер. Второй раз отмечаем время, когда порох догорел. Ага, нужна реакция хорошая. А дальше — сверяем результаты.
- 0,5 сек — дымный порох
- 1,6 сек — дымный порох или бездымный порох, склонный к детонации
- 1,8 — 2,2 сек — хороший бездымный охотничий порох
- 2,3- 2,4 сек — испорченный бездымный охотничий порох
- 4 сек — пистолетный порох
- Более 7 сек — винтовочный порох
Ах да, привести конкретные рецепты этих видов пороха мы не сможем, так как даже метод приготовления самого обычного чёрного пороха — и тот под запретом. Роскомнадзор бдит, понимаешь
И не важно, что на той же википедии это всё выложено более чем подробно, с чуть ли не пошаговыми инструкциями. И что потенциальному террористу ничего не стоит найти англоязычную информацию изготовления дымного пороха и пропустить её через гугл-переводчик
Бездымный порох
Для попаданца, каким-то образом получившего доступ к большим количествам азотной кислоты, может быть очень заманчивой идеей перейти на бездымный порох – ведь он имеет множество преимуществ. Даже Сайрес Смит из жюльверновского «Таинственного острова», имея под ногами залежи калийной селитры, посчитал, что пироксилин будет проще сделать, чем качественный черный порох. Пироксилин действительно можно сделать в глиняном горшке (даже на заводах долгое время нитровали целлюлозу именно в глиняных горшках). Однако с бездымный порохом не все так просто.
История нитроцеллюлозы началась в 1832 г, когда Анри Браконно обнаружил, что крахмал и древесные волокна под действием азотной кислоты превращаются в очень горючий и взрывчатый материал, названный ксилоидином. Чуть позже подобные эксперименты проводили Пелуз и Дюма, но получаемые вещества были весьма нестабильными и разлагались или загорались при хранении без видимой причины.
Только в 1846 г. Шонбейн смог приготовить нитроцеллюлозу в достаточно стабильной форме, для этого оказалось нужно всего лишь очень тщательно отмывать остатки кислот и высушивать при низкой температуре. В России Гесс и Фадеев проводили опыты с нитроцеллюлозой и выявили, что ее взрывчатые свойства превосходят дымный порох. Практическое применение нитроцеллюлоза получила после работ Абеля, который смог довести технологию до промышленного уровня, обнаружил высокую бризантность прессованного пироксилина (при инициированием капсюлем-детонатором с гремучей ртутью, а не простом поджигании), а также разработал простой метод анализа, позволяющий оценивать стабильность партий пироксилина в процессе производства и хранения (так называемая проба Абеля.
тринитрат целлюлозы
В зависимости от концентрации кислот в нитрующей смеси (обычно это смесь азотной и серной кислот), времени и температуры возможно получение нитроцеллюлозы с различной степенью нитрования и различными свойствами. Высоконитрованная целлюлоза, в которой пронитрованы практически все спиртовые группы (тринитрат целлюлозы), известна как пироксилин №1 и содержит 13-13,9% азота и растворима в ацетоне или этилацетате. При меньшей степени нитрования (12-13% азота) получается продукт с меньшей взрывчатой силой, пироксидин №2, растворимый не только в ацетоне и этилацетате, но и в спирто-эфирных смесях. Еще менее нитрованный коллоксилин (11-12% азота) очень хорошо растворима в спитроэфире и составляет основу коллодия и целлулоида.
Пироксилин достаточно быстро нашел применение как ВВ для начинения мин и снарядов в последней четверти XIX в, причем использовался влажный пироксилин №1 в виде сильно спрессованных шашек с 10% влажности, практически не чувствительный к ударам и трению, но легко взрывающийся с использованием гремучертутного детонатора и промежуточной шашки более восприимчивого сухого пироксилина (с 5% влажности). Однако эра пироксилина очень быстро закончилась – к ПМВ он был практически полностью вытеснен более мощными и менее требовательным к условиям хранения ВВ на основе ароматических нитросоединений.
Однако попытки применить нитроцеллюлозу в качестве метательного вещества поначалу были не успешны – рыхлая масса сгорала практически мгновенно, приводя к резкому скачку давления в канале ствола. Были попытки спрессовывать пироксилиновую массу или делать из пронитрованной ваты нити и шнуры, но результаты были неудовлетворительные. Появились пороха на основе слабонитрованной целлюлозы (9-10% азота) в смеси с калиевой или бариевой селитрой, такие пороха под названием малодымных ограниченно использовали в охотничьих и спортивных ружьях.
Все изменилось после того, как Вьель предложил растворять нитроцеллюлозу в спирто-эфирной смесь и высушивать – в этом случае получался твердый рогообразный материал, непроницаемый для пороховых газов и способный поэтому сгорать правильными слоями. В дальнейшем оказалось, что достаточно растворять лишь часть нитроцеллюлозы (например, используя смесь растворимого и нерастворимого в спиртоэфире пироксилинов, получая порох с оптимальным количеством азота около 12.5%) с образованием желеобразной массы, которую дальше прокатывали между горячили вальцами и полученный лист резали на зерна необходимых размеров. Желированную массу также можно было выдавливать из экструдера, получая зерна в виде лент или трубок, более подходящих для пушек. Такой порох – пироксилиновый или одноосновный – позволил существенно повысить скорость пули (см. ниже), при этом почти полное отсутствие твердых продуктов сгорание решило проблему засорения ствола нагаром и дыма при выстреле. Первыми приняли на вооружение порох Вьеля во Франции в 1884 г вместе с винтовкой Лебеля уменьшенного калибра (которую разрабатывали под малодымный зеленый порох на основе пикрата аммония и нитрата калия, но сразу же перевели на новый пироксилиновый), примеру быстро последовали остальные. Помимо нитроцеллюлозы добавляли стабилизаторы (например, анилин или дифениламин, нейтрализующие образующиеся при хранении пороха окислы азота) и пластифицирующие и флегматизирующие добавки (камфору, воск, дибутилфталат). Дмитрий Иванович Менделеев внес ощутимый вклад в развитие бездымных порохов, предложив оптимальную степень нитрации целлюлозы (пироколлодий с 12.5% азота, полностью желирующийся), позволяющей получать очень однородный продукт, и внес множество улучшений технологии производства.
Недостатком пироксилинового пороха являлось использование летучего растворителя, поэтому оказалось очень сложно делать пороховые зерна больших размеров, необходимые для длинноствольной и крупнокалиберной артиллерии, поскольку полностью высушивать их оказалось очень сложно (оставалось 5-7% растворителя), а улетучивание остатков растворителя сильно влияло на баллистические свойства при хранении и могло приводит к из растрескиванию. Но оказалось, что в качестве желирующего растворителя для пироксилина может выступать нитроглицерин. Нобель предложил желировать средненитрованный пироксилин нитроглицерином, такой порох получил название баллиститного. Похожий состав разработал Максим специально для своего пулемета. В Британии Адель и Дьюар разработали кордитные пороха из высоконитрованного пироксилина, нитроглицерина и вазелина в качестве флегматизатора, при это небольшое количество растворителя (ацетона) все же использовалось, но испарение его из смеси пироксилина с нитрогличерином происходило гораздо легче. Отсутствие летучего растворителя позволило получать пороховые зерна почти любого размера и формы, а наличие нитроглицерина в таких двухосновных порохах значительно повысило силу пороха. Позже, в годы ПМВ вместо нитроглицерина (когда закончились все жиры для производства глицерина) стали применять динитрат диэлиленгликоля, который желировал нитроцеллюлозу еще лучше и приводил к меньшему разгару ствола, а также другие нитроэфиры или ароматические нитросоединения (динитротолуол, нитронафталины).
В годы ПМВ начали производить трехосновные пороха для крупнокалиберных пушек, содержащие помимо нитроцеллюлозы и нитроэфиров еще нитрогуанидин (для уменьшения температуры сгорания и разгара ствола). Для повышения энергетических характеристик стали вводить все большее количество мощных ВВ типа ДИНА, гексогена, TNAZ и др., причем функция нитроцеллюлозы уменьшилась только до связующего компонента.
Все эти три типа порохов применяются по сей день – быстрогорящие пироксилиновые пороха в пистолетах и охотничьих ружьях, двухосновные пороха – в винтовках, пулеметах и полевой артиллерии, трехосновные пороха – в крупнокалиберных и танковых орудиях. Для снаряжения патронов стрелкового оружия в основном применяют сферический порох (одно- или двухосновный), получаемый очень безопасным и технологичным способом в водной эмульсии, и удобный для точного автоматического дозирования. В последних разработках пороха для артиллерийских систем делают вообще без нитроцеллюлозы, комбинируя гексоген или другие ВВ с эластомерным связующим типа полибутадиена, получая мощные пороха с низкой чувствительностью, не взрывающиеся при попадании снаряда или кумулятивной струи.
Преимущества бездымного пороха по сравнению с дымным состоят не только и не столько в отсутствии дыма и нагара и в большей энергоемкости, но и в способности гореть послойно, по нормали к поверхности. Черный порох способен гореть правильно только при запрессовке под очень большим давлением (до 3500 кгс/см2) – так производили бурый и шоколадный призматический порох во второй половине XIX в для появившихся стальных пушек, и замедлители в дистанционных трубках. Вариацией состава, размера и формы (дегрессивного или прогрессивного горения) пороховых зерен удается получить оптимальные характеристики горения под конкретный тип оружия, обеспечивая более плавный подъем давления при выстреле, умеренное пиковое давление и более высокое давления к моменту вылета снаряда. Растянутое во времени сгорание заряда позволяет увеличить количество пороха и общую энергию заряда пороха при том же максимальном давлении. Все это приводит к достижению высокой начальной скорости выстреливаемого снаряда. Часто встречается утверждение, что скорость горения бездымного пороха сильнее зависит от давления, чем для дымного, но это не совсем так – бездымный порох действительно горит очень медленно при атмосферном давлении, но при достижении определенного давления зависимость скорости горения от давления выходит на линейный участок. В диапазоне давлений 500-2000 атмосфер скорость горения одноосновного пироксилинового и дымного порохов отличается не более, чем на 20-30% (Горст, Пороха и взрывчатые вещества, Оборонгиз 1949 г, стр. 223).
Получается, что даже при наличии доступной азотной кислоты бездымный порох не такая простая задача для попаданца. Рыхлый пироксилин абсолютно не пригоден как метательное ВВ, изготовление же хотя бы простого пироксилинового пороха потребует серьезного оборудования и большого количества других компонентов. Бездымный порох абсолютно непригоден для ружей и мушкетов с фитильным и искровым замком, так как очень трудно загорается (хотя и имеет более низкую температуру воспламенения, чем черный порох) и до достижения давления форсирования, обеспечиваемого капсюлем-воспламенителем, горит очень медленно. Для дульнозарядного оружия бездымный порох также малопригоден из-за высокой чувствительности к массе заряда и плотности заряжания – отклонения в 5-10% приводят или к затяжным выстрелам и неполному сгоранию пороха, или опасному повышению давления в стволе. Давление, развиваемое при выстреле бездымным порохом, требует соответствующих материалов стволов винтовой и пушек – не сварочного железа, чугуна и бронзы, а литой стали.
Какие же могут быть альтернативы? Если основная задача состоит в уменьшении дымности при выстреле и нагара в стволе, решением будет использование перхлората аммония. Если же попаданец каким-то образом сможет сильно раньше внедрить литую сталь и глубокое сверление, то для заряжания длинноствольных дальнобойных пушек более пригодным окажется что-то вроде смесевых порохов на основе нитратов или перхлоратов в качестве окислителя и связующего (шеллака, каучука, или даже сахара, как в карамельном топливе) как горючего. Из подобных составов можно изготавливать плотные зерна, непроницаемые для пороховых газов и поэтому сгорающих правильными слоями, что и требуется. Скорость горения подобных составов достаточно легко регулировать в очень широких пределах, используя катализаторы (оксиды железа, меди, свинца, или же бихромат калия, гексацианоферрат калия) и флегматизаторы (подойдет канифоль).
Ученые придумали, как из древесины сделать бездымный порох. Его применят в ракетах
Новая технология помогла получить из древесины бездымный порох для космических ракет. Это безопасный и экологичный способ.
Читайте «Хайтек» в
Исследователи из Пермского Политеха создали способ, с помощью которого можно безопасно и экологично сделать из древесного сырья нитроцеллюлозу.
Из этого расходника сегодня создают, например, бездымный порох — его применяют во вспомогательных системах космических ракет и системах катапультирования кресел самолетов для спасения летчиков. Также из нитроцеллюлозы производят пластмассы, лаки, краски и эмали.
Исследователи также заинтересовались бездымным порохом в контексте ракетного топлива, так как нитроцеллюлоза — главный компонент твердого топлива для космических ракет.
Традиционные схемы переработки древесной целлюлозы, которые применяют в мировой практике, предусматривают стадии удаления лигнина и отбелки. Для этого используют взрыво- и пожароопасный диоксид хлора, который нельзя транспортировать, поэтому для его производства строят специальные цеха. Мы предложили технологию, которая не требует высокого давления и сложного оборудования. Она соответствует современным требованиям экономики и экологии.
Фирдавес Хакимова, доктор и профессор кафедры технологии полимерных материалов, порохов Пермского Политеха
Авторы новой работы впервые создали высококачественное сырье для химической переработки из небеленой целлюлозы, которую сейчас применяют в производстве бумаги.
Во время работы они применили экологичный реагент — пероксид водорода, чтобы удалить лигнин, а для отбелки — безопасный хлорит натрия.
Наша технология не затрагивает сложнейшего этапа получения целлюлозы на производстве – процесса варки древесины. Разработка поможет достичь двойного импортозамещения: хлопковое сырье можно будет заменить древесным, и в России появится отечественная целлюлоза для химической переработки.
Фирдавес Хакимова, доктор и профессор кафедры технологии полимерных материалов, порохов Пермского Политеха
В результате у авторов получились образцы бездымного пороха, которые соответствует принятым нормам. Также отмечается, что производство получилось экологически чистым и экономным — расход древесины сократился.