Солнечный коллектор своими руками как собрать и изготовить
Перейти к содержимому

Солнечный коллектор своими руками как собрать и изготовить

  • автор:

Как сделать солнечный коллектор своими руками: типы конструкций и этапы работ

Солнечный коллектор – это альтернативный источник получения тепловой энергии за счёт использования солнечной. Сейчас это удобное приспособление уже не новшество, но позволить себе его установку может далеко не каждый. Если подсчитать, покупка и монтаж коллектора, который удовлетворит бытовые нужды среднестатистической семьи, могут обойтись в пять тысяч американских долларов. Само собой, окупаемости такого источника придется ждать довольно долго. Но почему бы не сделать солнечный коллектор своими руками и установить его?

солнечный коллектор

Стандартное устройство имеет вид металлической пластины, которая помещена в пластмассовый или стеклянный корпус. Поверхность этой пластины аккумулирует солнечную энергию, задерживает тепло и передаёт его для различных бытовых нужд: отопление, подогрев воды и т.д. Интегрированные коллекторы бывают нескольких видов.

Накопительный солнечный коллектор

Накопительные

Накопительные коллекторы ещё называют термосифонными. Такой солнечный коллектор своими руками без насоса получается наиболее выгодным. Его возможности позволяют не только подогревать воду, но и поддерживать температуру на необходимом уровне некоторое время.

Такой солнечный коллектор для отопления состоит из нескольких баков, наполненных водой, которые находятся в теплоизоляционном ящике. Баки накрыты стеклянной крышкой, через которую пробиваются солнечные лучи и подогревают воду. Этот вариант наиболее экономичен, прост в эксплуатации и в обслуживании, но его эффективность в зимнее время практически равна нулю.

Накопительный солнечный коллектор

Плоские

Ппредставляет собой большую металлическую пластину – абсорбер, который находится внутри алюминиевого корпуса со стеклянной крышкой. Плоский солнечный коллектор своими руками будет более эффективен при использовании именно крышки из стекла. Поглощает солнечную энергию через градостойкое стекло, которое хорошо пропускает свет и практически его не отражает.

Внутри ящика присутствует термоизоляция, что позволяет значительно снизить теплопотери. Сама пластина имеет низкий КПД, поэтому она покрыта аморфным полупроводником, который значительно увеличивает показатель аккумуляции тепловой энергии.

При изготовлении солнечного коллектора для бассейна своими руками, часто отдают предпочтение именно плоскому интегрированному устройству. Впрочем, он не хуже справляется и с другими задачами, такими как: подогрев воды для домашних нужд и отопление помещения. Плоский – самый широко используемый вариант. Абсорбер для солнечного коллектора своими руками предпочтительно делать из меди.

Плоский солнечный коллектор

Жидкостные

Из названия понятно, что главным теплоносителем в них выступает именно жидкость. Водяной солнечный коллектор своими руками делается по следующей схеме. Через поглощающую солнечную энергию металлическую пластину, тепло передаётся по прикрепленным к ней трубам в бак с водой или незамерзающей жидкостью или прямо к потребителю.

К пластине подходят две трубы. Через одну из них подаётся холодная вода из бака, а через вторую в бак поступает уже подогретая жидкость. У труб обязательно должны присутствовать отверстия входа и выхода. Такую схему подогрева называют замкнутой.

Когда же подогретая вода напрямую подаётся для удовлетворения нужд пользователя – такую систему называют разомкнутой.

Неостекленные чаще применяются для нагрева воды в бассейне, поэтому сборка таких тепловых солнечных коллекторов своими руками не требует закупки дорогих материалов – сгодится резина и пластмасса. У остекленных КПД выше, поэтому они способны отапливать дом и обеспечивать потребителя горячей водой.

Воздушные

Воздушные устройства экономичнее вышеперечисленных аналогов, использующих воду в качестве теплоносителя. Воздух не замерзает, не подтекает и не кипит как вода. Если в такой системе происходит утечка, она не приносит столько проблем, однако определить где она произошла довольно сложно.

Самостоятельное изготовление не обходится потребителю дорого. Солнцеприемная панель, которая накрывается стеклом, нагревает воздух, который находится между ней и теплоизоляционной пластиной. Грубо говоря, это плоский коллектор, имеющий внутри пространство для воздуха. Внутрь поступает холодный воздух и под действием солнечной энергии подаётся потребителю тёплый.

Вентилятор, который крепится в воздуховод или непосредственно на пластину, улучшает циркуляцию и улучшает воздухообмен в устройстве. Для работы вентилятора требуется использование электричества, что не очень-то экономно.

воздушный коллектор

Такие варианты долговечны и надёжны и обслуживать их проще, чем устройства, которые используют жидкость в качестве теплоносителя. Для поддержания нужной температуры воздуха в погребе или для отопления теплицы солнечным коллектором подойдёт как раз такой вариант.

Как это работает

Коллектор собирает энергию с помощью светонакопителя или, другим словами, солнцеприемной панели, которая пропускает свет к аккумулирующей металлической пластине, где солнечная энергия преобразуется в тепловую. Пластина передает тепло теплоносителю, которым может быть как жидкость, так и воздух. Вода отправляется по трубам к потребителю. С помощью такого коллектора можно отопить жилище, нагреть воду для различных домашних целей или бассейна.

Воздушные коллекторы используются, в основном для отопления помещения или подогрева воздуха внутри него. Экономия при использовании таких устройств очевидна. Во-первых, не нужно использовать какое-либо топливо, а во-вторых, снижается потребление электроэнергии.

Коллектор Станилова

Для того чтобы получить максимальный эффект от использования коллектора и бесплатно подогревать воду на протяжении семи месяцев в году, он должен иметь большую поверхность и дополнительные теплообменные устройства.

Коллектор Станилова

Инженер Станислав Станилов представил миру самую универсальную конструкцию солнечного коллектора. Основной идеей использования разработанного им устройства является получение тепловой энергии за счет создания парникового эффекта внутри коллектора.

Конструкция коллектора

Конструкция этого коллектора очень проста. По сути, это солнечный коллектор из стальных труб, сваренных в радиатор, который помещён в деревянный контейнер, защищённый теплоизоляцией. В качестве теплоизоляционного материала могут выступать минеральная вата, пенопласт, понополистирол.

Коллектор Станилова

На дно коробки кладется оцинкованный металлический лист, на который монтируется радиатор. И лист, и радиатор окрашиваются в чёрный, а сама коробка покрывается белой краской. Разумеется, контейнер накрывается стеклянной крышкой, которая хорошо герметизируется.

Материалы и детали для изготовления

Для сооружения такого самодельного солнечного коллектора для отопления дома понадобится:

  • стекло, которые будет служить в качестве крышки. Размер его будет зависеть от габаритов короба. Для хорошей эффективности лучше подбирать стекло размером 1700 мм на 700 мм;
  • рама под стекло – её можно сварить самостоятельно из уголков или сколотить из деревянных планок;
  • доска для короба. Тут можно использовать любые доски, даже с разборки старой мебели или дощатого пола;
  • прокатный уголок;
  • соединительная муфта;
  • трубы для сборки радиатора;
  • хомуты для крепления радиатора;
  • лист оцинкованного железа;
  • приёмная и выпускная труба радиатора;
  • бак объемом 200−300 литров;
  • аквакамера;
  • теплоизоляция (листы пенопласта, пенополистирола, мин. вата, эковата).

Этапы работ

Этапы изготовления коллектора Станилова своими руками:

  1. Из досок сколачивается контейнер, дно которого укрепляется брусьями.
  2. На дно укладывается теплоизолятор. Основание должно быть особенно тщательно утеплено, чтобы избежать утечки тепла у теплообменника.
  3. После на дно короба устраивают оцинкованную пластину и устанавливают радиатор, который сваривается из труб, и закрепляют его стальными хомутами.
  4. Радиатор и лист под ним окрашиваются в черный цвет, а короб – в белый или серебристый.
  5. Бак с водой должен быть установлен под коллектором в теплом помещении. Между ёмкостью для воды и коллектором нужно устроить теплоизоляцию, чтобы трубы находились в тепле. Бак можно поместить в большую бочку, в которую можно засыпать керамзит, песок, опилки и т.д. и таким образом утеплить.
  6. Над баком нужно установить аквакамеру для того чтобы в сети создавалось давление.
  7. Монтаж солнечного коллектора своими руками нужно осуществлять на южной стороне кровли.
  8. После того как все элементы системы готовы и установлены, нужно соединить их в сеть полудюймовыми трубами, которые должны быть хорошо утеплены, дабы уменьшить теплопотери.
  9. Неплохо будет соорудить и контроллер для солнечного коллектора своими руками, так как заводские устройства эксплуатируются недолго.

солнечный коллектор

Расчет размеров

Расчёт размеров для того чтобы изготовить солнечный коллектор для отопления своими руками, прежде всего, направлен на определение нагрузки системы теплоснабжения, покрытие которой берет на себя это устройство. Само собой, что подразумевается использование нескольких источников энергии в комплексе, а не только энергии солнца. В этом деле важно расположить систему таким образом, чтобы она взаимодействовала с другими – тогда это даст максимальный эффект.

Для определения площади коллектора нужно знать, для каких целей он будет использоваться: отопление, подогрев воды или и того, и другого. Проанализировав данные водомера, потребностей в обогреве и данные инсоляции местности, в которой планируется установка, можно высчитать площадь коллектора. К тому же, надо учесть потребности в горячей воде всех потребителей, которые планируется подключить к сети: стиральной машины, посудомоечной машины и т.д.

солнечный коллектор

Селективное покрытие

Селективное покрытие выполняет едва ли не самую основную функцию в работе коллектора. Пластина или радиатор с нанесённым покрытием притягивают в разы больше солнечной энергии, превращая её в тепло. Можно приобрести специальный химикат в качестве селективного покрытия, а можно просто окрасить теплонакопитель в чёрный цвет.

Чтобы сделать селективное покрытие для солнечных коллекторов своими руками, можно применить:

  • специальный готовый химикат;
  • оксиды разных металлов;
  • тонкий теплоизоляционный материал;
  • чёрный хром;
  • селективную краску для коллектора;
  • чёрную краску или пленку.

Селективное покрытие

Коллекторы из подручных материалов

Собрать солнечный коллектор для отопления дома своими руками и дешевле и интереснее, ведь изготовить его можно из различных подручных материалов.

Из металлических труб

Этот вариант сборки походит на коллектор Станилова. При сборке солнечного коллектора из медных труб своими руками, из труб варится радиатор и помешается в деревянный короб, проложенный изнутри теплоизоляцией.

Наиболее эффективными будут медные трубы, алюминиевые тоже можно использовать, но их тяжело варить, а вот стальные – наиболее удачный вариант.

Такой самодельный коллектор не должен быть чересчур большим, чтобы его было легко собрать и монтировать. Диаметр труб на солнечные коллектора для сварки радиатора должен быть меньше, чем у труб для ввода и вывода теплоносителя.

солнечный коллектор Из металлических труб

Из пластиковых и металлопластиковых труб

Как сделать солнечный коллектор своими руками, имея в домашнем арсенале пластиковые трубы? Они менее эффективны в качестве теплонакопителя, однако в разы дешевле меди и не коррозируют как сталь.

Трубы выкладываются в короб по спирали и закрепляются хомутами. Их можно покрыть черной или селективной краской для большей эффективности.

С укладкой труб можно экспериментировать. Так как трубы плохо гнутся, их можно укладывать не только по спирали, а и зигзагом. Среди преимуществ, пластиковые трубы легко и быстро поддаются пайке.

коллектор из пластиковых труб

Из шланга

Чтобы сделать солнечный коллектор для душа своими руками понадобится резиновый шланг. Вода в нем нагревается очень быстро, поэтому его тоже можно использовать в качестве теплообменника. Это самый экономичный вариант при изготовлении коллектора своими руками. Шланг или полиэтиленовая труба укладывается в короб и прикрепляется хомутами.

Так как шланг скручен по спирали, в нем не будет происходить естественная циркуляция воды. Чтобы использовать в данной системе ёмкость для накопления воды, необходимо оснастить её циркуляционным насосом. Если это дачный участок и горячей воды уходит немного, то того её количества, которое буде поступать в трубу, может оказаться достаточно.

коллектор из шланга

Из банок

Теплоносителем солнечного коллектора из алюминиевых банок выступает воздух. Банки соединяются между собой, образуя трубу. Чтобы сделать солнечный коллектор из пивных банок нужно обрезать днище и верх каждой банки, состыковать их между собой и склеить герметиком. Готовые трубы помещаются в деревянный короб и накрываются стеклом.

В основном, воздушный солнечный коллектор из пивных банок используют для устранения сырости в подвале или для обогрева теплицы. В качестве теплонакопителя можно использовать не только пивные банки, а и пластиковые бутылки.

солнечный коллектор Из банок

Из холодильника

Солнечные водогрейные панели своими руками можно соорудить из непригодного холодильника или радиатора старого авто. Конденсатор, извлеченный из холодильника, надо хорошо промыть. Горячую воду, полученную таким способом, лучше использовать только для технических целей.

На дно короба расстилается фольга и резиновый коврик, потом на них укладывается конденсатор и закрепляется. Для этого можно применить ремни, хомуты, либо то крепление, которым он был прикреплен в холодильнике. Для создания давления в системе не помешает установить над баком насос или аквакамеру.

коллектор из холодильника

Видео

Вы узнаете, как сделать солнечный коллектор своими руками, из следующего видео.

Солнечный коллектор своими руками как собрать и изготовить

Евросамоделки — только самые лучшие самоделки рунета! Как сделать самому, мастер-классы, фото, чертежи, инструкции, книги, видео.

  • Главная
  • Каталог самоделки
  • Дизайнерские идеи
  • Видео самоделки
  • Книги и журналы
  • Партнеры
  • Обратная связь
  • Самоделки для дачи
  • Самодельные приспособления
  • Автосамоделки, для гаража
  • Электронные самоделки
  • Самоделки для дома и быта
  • Альтернативная энергетика
  • Мебель своими руками
  • Строительство и ремонт
  • Самоделки для рыбалки
  • Поделки и рукоделие
  • Самоделки из материала
  • Самоделки для компьютера
  • Самодельные супергаджеты
  • Другие самоделки
  • Материалы партнеров

Высокоэффективный солнечный коллектор своими руками

Жаль, что в интернете практически нет ни одной нормальной статьи, о том, как сделать высокоэффективный солнечный коллектор своими руками. В основном, интернет завален всякой ерундой, типа того, как сделать коллектор из радиатора холодильника или из пластикового мусора. Возможно, это будет неплохим решением для дачи, но для нормальной работы такой солнечный водонагреватель нам не подойдет, так как я планирую использовать свои коллекторы для поддержания отопления и ГВС в своем доме. Что из этого получится, вы обязательно узнаете в будущих статьях!

На сегодня, могу с уверенностью сказать, что мой коллектор весьма неплох. Во-первых, он полностью медный. Во-вторых – он покрыт самодельным селективным покрытием, пусть далеко не самым эффективным, но лучше чем черная матовая краска.

В пасмурную погоду, в феврале он нагревался до +40С, а при наличии солнца кипятил воду. Недавние испытания на нагрев показали, что коллектор, в сухом состоянии, при уличной температуре +35С (летом) нагревался до +156С, под прямым солнечным излучением и одинарном остеклении.

Очень жаль, что статья пока «туго» выдается поисковиками. По запросу «солнечный коллектор своими руками» я далеко не на первых страницах. Если вам действительно понравилась эта статья, и вы почерпнули что-то полезное и интересное – не поленитесь поделиться ссылкой на мою статью где-нибудь на просторах интернета. Пусть люди знают, что сделать хороший солнечный коллектор своими руками под силу каждому любителю! Я все очень подробно описал, а если у вас остались вопросы – задавайте их на форуме, с радостью отвечу.

Идея использовать солнечную энергию «на шару» волновала меня давно. Когда я начал искать коммерческие предложения различных фирм, занимающихся солнечными коллекторами – то понял, что шара бесплатной не бывает! Все фирмы, увы, озвучивали весьма нескромные цифры…

Человек я со средним достатком, и такую сумму «выложить» за солнечную установку, наверное пока не в состоянии. Поскольку, с детства любил мастерить, начал обдумывать идею сделать солнечный коллектор своими руками. Но не такой примитивный, который бы только летом работал, для душа, а такой что б и зимой мог воду согреть – при наличии солнца, разумеется!

Много я форумов перечитал, видео в YouTube пересмотрел, даже книжки читал 🙂 И вот решился. Сразу скажу, что коллектор мой хоть и самодельный, но не очень прям бесплатный – цветной метал, он всегда был не дешевым.
Изготовление медного абсорбера

Абсорбер – поглощающая панель, которая воспринимает на себя солнечное излучение и нагревается! Ни один солнечный коллектор не будет без нее работать — это его основа! Было решено делать медный абсорбер по трем причинам. Первая – это легкость работы с этим материалом. Легко гнется и паяется в домашних условиях. Вторая – высокая теплопроводность, что важно для эффективного коллектора. Третья — из меди можно непосредственно получить селективное покрытие, черный оксид меди II — CuO. Был существенный недостаток – это цена. Просмотрев все предложения в интернете я нашел цену около 110 грн за кг. Это была медная лента, толщиной 0.2 мм и шириной 30 см. Длина ее как бы не ограничена. Я заказал себе 8 метров ленты, что составило около 4.4 кг и обошлось мне почти в 500 грн с доставкой!

Радиатор я спаял из двух труб, длиной по 125 см диаметром 22мм и 10 труб длиной 2м и диаметром 9.5 мм (продается как 10мм). Трубы эти мне удалось найти недорого 🙂 Спасибо добрым людям!

Общий вид радиатора. Толстые трубы — 22мм. Тонкие — 10мм.

В толстых трубах, я через каждые 10 см просверлил отверстия диаметром 9.5мм. Далее вставил тонкие трубы в полученные отверстия так, чтобы они не сильно глубоко торчали внутри толстой трубы (иначе будет сильное гидравлическое сопротивление). Трубы торчали максимум на 5- 10 мм. Затем я это все дело припаял. Паял трубы первый раз в жизни. Использовал мягкий припой SANHA и флюс той же фирмы. Паялся он очень легко. Использовал самую недорогую газовую горелку TOPEX. Хотя нет! Были дешевле, без пьезоэлемента – я решил купить с пьезо!

Использовать специальные переходники оказалось дороговато.
Солнеыный коллектор не должен протекать.

Когда весь радиатор был спаян, на концы припаял две заглушки и две резьбы на 3/4 дюйма. Припаял по диагонали. После этого, с одной стороны вкрутил заглушку, а с другой – штуцер, чтобы на него можно было надеть шланг от компрессора. Залил водой и начал опрессовывать. Накачал в него около 7 бар. Радиатор нигде не тек – исключения составили только резьбовые соединения – видимо мало фумленты намотал. Лучше конечно без воды, а просто воздухом, и помещать спаянные соединения в емкость с водой – тогда пузырьки воздуха сразу дадут знать о плохой пайке. Не было у меня такой емкости – поэтому я залил воду внутрь радиатора.

Абсорбера и резьба на 3/4.

Резьба на 3/4 дюйма. С другой стороны, по диагонали точна такая же.

После удачной опрессовки я приступил к припаиванию медной ленты. Если на пайку радиатора у меня ушло 3-4 часа, то следующий процесс занял у меня три долгих и мучительных дня! Я нарезал ленту полосками по 1м. Всего нарезал 7 полосок. И далее спаял их в одно общее полотно. Паял внахлест по 5 – 10 мм. В итоге, я получил полотно размером примерно 1мх2.07м – на это ушел целый день.

Две полоски чистой медной ленты. Длина 1м. Ширина 30см.

Медная лента спаяна.

Все полосы воедино. Слева — 4 жертвы экспериментов с чернением. Отмытые ортофосфорной кислотой. Далее 3 «чистых» полоски.

После этого, набравшись сил, я приступил к припаиванию полотна к ранее изготовленному радиатору. Для хорошего теплообмена припаивать надо не тяп-ляп и там-сям а нормально, по всей длине трубы! Итого мы получили задачу в припайке 20 метров труб. Паял я феном, пока не кончился дорогой мягкий припой SANHA. Далее вход пошла газовая горелка и базарный (самопальный) припой аля «ПОС 40», который паялся очень тяжело. В ход пошел и отцовский припой, часть которого паялась нормально, а часть еле-еле. В общем, припоя ушло наверное грамм 500 – 700, а он весьма не дешевый. Например, 250г хорошего припоя SANHA мне обошлись в 160 грн. Базарный – значительно дешевле, а отцовский – бесплатно 🙂

Прижмал трубы стопкой кирпичей. Также аккуратно, без фанатизма, ровнял резиновым молотком. Придерживал рукой.

Отдельно хочу сказать про место стыка медной ленты и тонких медных труб. Ленту, от температурных расширений ведет очень сильно, она становится вся волнистая и бугристая. Поэтому трубу надо хорошо прижимать к ленте, чтобы зазор был минимальным! И как раз в этот зазор должен попасть припой. Этот важный процесс занял у меня 2 полных дня, прерываясь на обед.

Зазор между трубой и медной лентой.

Видны припаяная трубка и еще свободная. Такие зазоры в свободной трубе не допустимы. Она должна максимально плотно прижиматься к ленте.

Все, пайка была завершена! До сих пор у меня есть опасения по поводу использования мягкого припоя. Температура плавления которого составляет 180С. Но по идее – должен выдержать. Практика и жаркое лето Одессы покажет.

Собраный медный абсорбер.

3 дня работы. Припаял!

Баллада о чернении — селективное покрытие своими руками.

Понятно, что абсорбер оставлять как есть – т.е медного цвета не очень хорошо. Сама по себе медь (а точнее ее оксидная пленка Cu2O) является неплохим теплоприемником (да-да, обычная рыжая медь, по идее – даже лучше чем обычная термостойкая краска), но эта пленка не очень стабильная и может дальше разрушаться — окисляться. В итоге вы можете получить сине-зеленый абсорбер. Я не буду здесь вдаваться в теорию о высокоселективных покрытиях. Проще всего медь просто покрасить черной термостойкой краской. Видел в YouTube видео:

где у человека такие коллекторы тоже кипятили воду (покрытые именно обычной термостойкой краской), но по погоде – было либо лето, либо хорошая весна. Да и количествео коллекторов просто обязаны ее кипятить 🙂 Чтобы получить более эффективный коллектор — лучше покрыть медь оксидом меди 2 – CuO – во первых, это покрытие черное и имеет неплохой коэффициент поглощения (от 70 до 90%), а во вторых имеет довольно низкий коэффициент эмиссии (излучения). Если верить — то это от 5% до 20% в зависимости от толщины самой пленки. Т.е является неплохим селективным покрытием, которое можно получить в домашних условиях. Естественно – с заводским покрытием оно тягаться не может, но по идее – это должно быть лучше, чем черная краска (которая имеет хороший коэффициент поглощения и высокий коэффициент излучения около 80% – что плохо для солнечного коллектора). Есть специальные селективные краски – но купить их, наверное, будет дороже, чем покрыть медь CuO. Хотя процесс нанесения CuO значительно труднее, чем просто покрасить. Где-то так…

Я остановился именно на чернении меди, т.е получении CuO на поверхности своего абсорбера. Сразу скажу, что провозился я с ним около 3-х дней, не считая предварительных тестовых опытов.

Получать CuO надо окисляя саму медь, из которой изготовлен (спаян) наш абсорбер. Наносить кисточкой или валиком его не надо 🙂 И так, какие для этого нужны отравы:

Каустическая сода (едкий натр NaOH)—50-60 г
Персульфат калия (K2S2O8)————14-16 г
Вода 1л

Точно такой же, но вместо K2S2O8 применяется (NH4)2S2O8 (аммоний надсернокислый)

Каустическая сода (едкий натр NaOH)—100г
Хлорит натрия NaClO2 —————— 50-60г
1 л. воды

Для все трех способов еще 2 обязательных условия — чистые обезжиренные поверхности и температура раствора и поверхности около 60-65С. И еще – раствор должен быть свежеприготовленный, так как кислород, который выделяется в результате реакции довольно быстро улетучивается. Воду брать лучше дистиллированную.
Не забудьте о технике безопасности.

Едкий натр или NaOH – очень любит органику – т.е вас. Разъедает кожу, глаза. Ни в коем случае не берите его и его растворы голыми руками и берегите глаза защитными очками. Пользуйтесь резиновыми перчатками. Когда NaOH разбавляешь в горячей воде – он очень бурно «вскипает».

Вот такие вот можно получить химические ожоги. Будьте осторожны.

Аммоний надсернокислый или (NH4)2S2O8 при нагревании выделяет аммиак. Даже не думайте пользоваться этим методом в закрытом помещении без средств газовой защиты. Мне пришлось покупать газопылевой респиратор, на котором было написано «защита от аммиака», так как я пользовался именно этим методом. Без респиратора я бы наверное коллектор свой не доделал 🙂 Летом, скорее всего, можно и на открытом воздухе без противогаза, но надо все равно поддерживать температуру? А она, поверьте нужна. Без нагрева химичиские реакции проходят очень медлено.

Респиратор пылевой и газопылевой.

Слева обычный пылевой респиратор — он вам не поможет. Справа газопылевой — то что надо!

Хлорит натрия (не путать с хлоридом натрия – это обычная поваренная соль) или NaClO2. Вроде ничего опасного, но если честно — я не уверен. Голыми руками лучше не брать, выделяется немного хлора. Мне удалось его достать именно для первоначальных опытов. Вещи правда потом все воняют хлором, но жить можно.

Персульфат калия он же калий надсернокислый или K2S2O8 – наверное, самый безопасный метод. Но его достать было дорого и по почте. Так что этот метод я не испытывал и ничего сказать не могу. В целом, все реактивы можно найти (заказать) в интернете. Я покупал в Одессе – есть фирма ТОР. Там можно купить практически любую химию… Неудачные результаты экспериментов я смывал ортофосфорной кислотой (часто применяют ее как флюс для пайки меди, является также одним из основных составов напитков Coca-Cola). Эта кислота легко смывает наш хваленный CuO!

Как же я чернил?

Изначально идея была такой. После спайки абсорбера я загнул его края и получил такое здоровое блюдце. Нижние стыки, на всякий случай промазал герметиком для каминов. Ведро с кипятильником, в него опущены две трубы – подача и обратка. Насос (я купил циркуляционный), должен был гонять горячую воду из ведра по нашему коллектору, нагревая его. Далее я хотел вылить в это разогретое «блюдце» свежеприготовленный раствор и вуаля! Но ничего не получилось. Во первых, циркуляционный насос может гонять воду только в замкнутом контуре. Поднять воду из открытой емкости — ведра, хоть на 10 см он не способен. Во вторых, листы я пропаял не очень герметично (именно поэтому я промазал все стыки герметиком), но вот засада – герметик оказался водорастворимым. Короче, блюдце мое надо было правильнее называть дуршлагом для макарон. Во!

Абсорбер с загнутыми краями — блюдце

Рабочаю поверхность абсорбера. Видны загнуте бортики.

Абсорбер — вид сбоку.

Вид сбоку. Черное пятно — тот самы герметик.

Поэтому я пошел по самому трудному пути – это забабахать ванну, в которую я бы смог поместить полностью весь абсорбер и там его протравить. Для таких размеров, понадобилось мне около 30 литров протравы. Нагреть такое количество воды в холодном, не отапливаемом подвале было довольно «улвекательным».

Почему я не чернил полоски отдельно? Ведь на первый взгляд это намного проще. А затем можно уже собирать из черненой меди абсорбер. Во-первых – медь черниться сразу с двух сторон, поэтому с обратной стороны, где нужна пайка, пришлось бы эту черноту смывать. Ортофосфорная кислота могла легко попасть на рабочую сторону и смыть CuO. Во-вторых, и это более важный момент, CuO не выдерживает температуру пайки. Он относительно хорошо выдерживает температуры в области 300С, а пайка газовой горелкой дает большую температуру. Т.е мы бы получили разрушение CuO в местах пайки. Поэтому, было решено паять абсорбер, а затем его уже полностью чернить.

Так я и поступил. На ровной плоскости выложил из того что валялось под рукой (это бруски и кирпичи) ванну нужных размеров и застелил ее пленкой. Положил в нее абсорбер вверх ногами (т.е тыльной стороной вверх). Иначе понадобилось бы 90 литров раствора. Да и во время опытов я заметил – что тыльная сторона пластин чернилась как-то лучше. Возможно, это связано с тем, что кислород поднимался вверх и натыкался на медь, окисляя ее.

Ванна для абсорбера.

Ванна из брусков, кирпичей и досок. Клеенкой пока не застелена — примерял абсорбер 🙂

Залил я все это раствором и продержал час, при этом периодически шатал-качал абсорбер, чтобы из-под него удалялись пузырьки воздуха. Где-то через час я сделал контрольный осмотр – в целом он был весь черный, но кое-где по-прежнему были медные пятная солидного размера. Я оставил все так на ночь…

Процесс пошел. Чтобы было меньше испарений я накрыл все кусками пенопласта и полиэтилена.

Утром пришел, проветрил подвал – так как находится в нем, без газозащитного респиратора, до сих пор было невозможно. Потом поднял абсорбер – и О облом! Медные пятна не только не исчезли, но и еще стали больше.

Обратная сторона. Фото лицевой стороны сделать не удалось. Когда я его приподнял — то стекла черная водичка, и медные пятна стали значительно больше!

Дальше пришлось разработать методику локального чернения меди. Способ нашелся, который, к счастью, позволил мне залатать все мои пятна. Во-первых, вместо циркуляционного насоса я одолжил у мамы насосик от фонтанчика – он прекрасно справился с поставленной задачей – гонял кипяточек по моему абсорберу (надеюсь, фонтанчик у мамы в этом году будет ничуть не хуже, чем в прошлом. На насосике внятно написано max 35C). Абсорбер разогрелся где-то до 55С. Чтобы получить большую температуру надо было 2 кипятильника, а в наличии было только один. В подвале было +6С +7С – поэтому абсорбер мой очень интенсивно охлаждался. На такой подогретый абсорбер я выливал малые порции свежего раствора. Это позволило зачернить некоторые области. Но все равно остались бугорки, где раствор не мог задерживаться – он скатывался вниз, в углубления. Далее я брал газовую горелку, разогревал нужную область, затем губкой смачивал ее – при этом издавался характерный звук «пшшшыыы». Опять разогревал и опять губкой. Именно со второго раза медь чернела.

Вот такая вот банька у меня была.

На фото видно ведро, термометр. Не видно — насосик и кипятильник. Таким способом я грел асборебр.

Вот такие вот мучения! Затем оставил абсорбер еще раз на ночь, обильно полив его растворчиком. Утром пришел, вымыл его. Покрытие оказалось прочным, не слазило и не стиралось.

В таком состоянии я его оставил на ночь.

И немного фоток промытого и высушенного асборбера, без комментариев.

В перерывах между пайкой (к примеру радиатор я спаял сразу, а вот медную ленту искал полторы недели) я начал собирать корпус своего будущего солнечного коллектора. Решил использовать плиты OCБ 10мм. Легкие, прочные, недорогие, влагостойкие. Раскроил фанерку по размерам и собрал короб. Для соединений использовал такие вот уголки.

Уголки для корпуса солнечного коллектора.

Уголки для соединения фанеры.

Предварительно собранный короб. Потом пришлось разобрать!

Затем уложил теплоизоляцию – базальтовую вату, толщиной 5 см. По бокам те же 5 см. Всю вату опрыскивал гидрофобизатором (водоотталкивающая жидкость) и укрыл кухонной фольгой. Зачем фольга? Точно не знаю, но предполагаю… Когда я смотрел картинки солнечных коллекторов в разрезе, я везде обращал внимание, что абсорбер просто лежит на вате (утеплителе). Т.е абсорбер непосредственно контактирует с ватой! Ну и что. Насколько я знаю — излучение это 70% из всех возможных теплопотерь (излучение, теплопередача и конвекция). Конвекция и теплопередача берут на себя лишь по 15% каждая. Поэтому я решил не облучать вату тепловым излучением от абсорбера, а отражать его обратно на поглощающую панель (абсорбер). Фольга отражает до 97% излучения. Для этого сделал воздушный зазор в 2 см между ватой и абсорбером чтобы дать возможность работать фольге, как отражателю. Если бы зазора не было – то фольга бесполезна.

Cначала я собрал 3 стенки, затем завел абсорбер, уложил тепловую изоляцию четвертой боковой стены, и затем прикрутил саму боковую стенку. Именно такая последовательность – иначе не представляю, как это можно сделать!

Готовый корпус коллектора.

Все готово к установке поглащающей поверхности.

Завел абсорбер в короб. Затем выложил теплоизоляцию. Четвертая боковая стенка не прикручена.

Далее проще – прикрутил по периметру кантик из нарезанных реек и проклеил их уплотнительными резинками (продаются такие для окон и дверей).

Деревяный бортик для стекла.

Мне удалось достать бесплатные стеклопакеты (опять же, спасибо добрым людям!). А 1м2 стеклопакета весит 20 кг. Итого, вес стекла получился весьма внушительным – 46 кг. Поэтому было решено нести коллектор в место установки без стекла, а стекло ставить потом, отдельно. Чтобы коллектор не запылился, я обернул его кухонной пищевой пленкой. Так его и оставил на пару дней, пока не появилась хорошая погода и помощник. Один, вытащить такую байду я бы не смог!

Коллектор в сборе!

Все! Готов к установке.

27 Февраля, +6С. Было тихо, безветренно. Сплошные легкие тучки, но солнце не светило ярко. Мы с помощником вынесли мой коллектор к месту установки – сам коллектор очень легкий (вата, фанера и медь), но весьма габаритный! Размер его 1.08м х 2.17м. Там мы его установили, и пошли в гараж протереть стеклопакеты перед их установкой в коллектор. Когда вынесли первый стеклопакет, я взялся за патрубок – а он был уже приятно теплым! Когда вынесли второй стеклопакет – патрубок стал еще горячее. Когда вынесли третий стеклопакет – держаться за патрубок более 2 – 3 сек было уже проблематично. Нет, мы не мыли и не обмывали стекла 3 часа! Весь процесс остекления занял максимум пол часа.

Потом мы начали заливать в него воду, чтобы замерять температуру. Ведь было же интересно — столько потрачено сил и средств – а какой же результат. К этому моменту как раз наступил полдень, и солнце наконец-то вышло из-за туч! После первой порции воды из коллектора начал выходить пар! Я на радостях сказал на матерном языке, что мол вот неплохой самовар получился! В общем, испытания прошли успешно. Коллектор легко кипятил каждую новую порцию воды – около 200 г. После доливки новой порции воды, через секунд 10 из патрубка выходил кипяток – термометр показывал 96С-98С. Понятно, что это не много – но помоему, весьма не плохо как для самоделки?

И на последок, еще фотографии с комментариями + видео.

Коллектор во весь рост.

Видно, как с утра часть коллектора затеняется домом.

В режиме стагнации (простоя) теплоизоляция не выдерживает — плавится.

Температура на выходном патрубке в режиме стагнации. Покрытие 2 стекла (стеклопакет).

Видео в первый день испытаний. Хорошо видно кипение воды.

Видео, которое я снял через 10 месяцев. Так как скоро буду демонтировать и переделывать — решил снять как оно все было.

Солнечный коллектор своими руками для нагрева воды и для отопления: пошаговая инструкция

Хорошие владельцы частных домо в в сегда находятся в поиске возможностей сэкономить на подогреве воды и на отоплении. Особенно актуально это становится в последнее время, когда цены на коммунальные услуги имеют стойкую тенденцию к росту чуть не каждый квартал . На помощь приходит сама природа с ее неистощимым источником энергии – солнечным излучением. Применяя на практике законы физики, народные умельцы находят интересные способы экономии, разрабатывая и собирая солнечные коллекторы, который под силу сделать, наверное, любому домовладельцу самостоятельно — стоит только приложить немного сил и умения.

Солнечный коллектор своими руками

Солнечный коллектор своими руками

Солнечный коллектор своими руками может быть изготовлен множественными способами и из самых различных материалов, порой даже из тех, которые попросту «валяются под ногами». Их конструируют из обычных старых пивных банок, пластиковых бутылок, шлангов или труб, с применением стекла, панелей поликарбоната и других материалов.

Некоторые из способов изготовления коллекторов будут рассмотрены ниже, но сначала стоит изучить схемы подключения – они, как правило, является примерно общими для любых солнечных систем нагрева воды.

Схемы подключения солнечного водяного коллектора

Эффективная работа системы нагрева воды от солнечных лучей зависит не только от того , из чего изготовлен коллектор, но и насколько правильно он будет установлен и подключен . Вариантов схем подключения — достаточно много, но не стоит выискивать самые сложные, так как вполне можно воспользоваться базовыми, которые доступны и понятны.

«Летний» вариант горячего водоснабжения от солнечного коллектора

Эта несложная схема подключения солнечного коллектора применима как для подогрева воды для летнего душа, так и для домашних нужд. Если горячая вода нуж на на улице в летней постройке, то бак для нее устанавливается тоже на воздухе. В том случае, когда горячее водоснабжение разводится по дому, и аккумулирующий бак устанавливается там же.

"Летний" вариант подключения коллектора

«Летний» вариант подключения коллектора

Эта схема обычно предусматривает естественную циркуляцию воды, и в таком случае батарея-коллектор устанавливается ниже на 800 ÷ 1000 мм уровня емкости , куда будет поступать горячая вода – это должно обеспечиться разностью в плотности холодной и нагретой жидкости. Для соединения коллектора с баком используются трубы диаметром не меньше, чем ¾ дюйма. Для сохранения воды в аккумулирующей емкости в горячем состоянии, которого она достигнет от нагрева дневным солнцем, стенки необходимо хорошенько утеплить, например, минеральной ватой толщиной в 100 мм и полиэтиленом (если над бойлером не будет устроена крыша). Но все же лучше предусмотреть для емкости стационарное укрытие, так как если утеплитель промокнет от дождя, то он существенно снизит свои термоизоляционные свойства.

Естественная циркуляция не слишком хороша для использования в системе с солнечным коллектором, так как создается слабая инертность движения воды в контуре. А если батарея и бак находятся достаточно далеко друг от друга, то вода, пройдя этот путь, будет постепенно остывать. Поэтому , для увеличения эффективности, часто устанавливается циркуляционный насос. Этот вариа нт пр игоден для согрева воды только лишь в теплую половину года, а на зиму воду из системы придется обязательно слить, иначе, замерзая, она запросто разорве т т рубы.

«Зимняя» схема подключения солнечного подогрева воды

Если планируется использовать солнечный коллектор круглогодично, то чтобы в сильные холода в трубах вода не замерзала, в контур вместо нее заливается специальный теплоноситель – антифриз, то есть незамерзающая жидкость. Схема принимает совсем иной вид — устанавливается бойлер косвенного нагрева. В этом случае нагретый в солнечном коллекторе антифриз будет проходить чере з з меевик-теплообменник бойлера, согревая воду, находящуюся в баке.

Зимняя схема с использованием принципа косвенного нагрева

Зимняя схема с использованием принципа косвенного нагрева

В эту систему обязательно встраивается расширительный бак и «группа безопасности» — автоматический воздухоотводчик , манометр и предохранительный клапан , рассчитанный на нужное давление. Для постоянного движения теплоносителя обычно используется циркуляционный насос.

Вариант отопления от солнечного коллектора

При использовании солнечной тепловой энергии для отопления дома применяется также бойлер косвенного нагрева, подключенный к коллектору, а также для дополнительного подогрева теплоносителя – котел , работающий на твердом топливе или газе. В осенние или весенние дни, когда солнце способно нагреть теплоноситель до нужной температуры, котел можно попросту отключать.

Солнечный коллектор - хорошее подспорье и для отопления дома

Солнечный коллектор — хорошее подспорье и для отопления дома

Если зимы в регионе очень холодные, то не стоит ожидать от коллектора большой эффективности, так как в этот период мало солнечных дней, а само светило находится низко к горизонту. Поэтому дополнительный подогрев теплоносителя и горячей воды просто необходим. Единственно, чем поможет солнечная батарея сэкономить на топливе — э то то , что в котел будет поступать не холодная , а уже несколько подогретая вода, а значит для доведения ее до нужной температуры потребуется меньше сжигать газа или дров.

Нужно знать и то, что чем больше по площади сделать солнечный тепловой коллектор, тем больше энергии он в состоянии будет вобрать. Поэтому, чтобы подобная система смогла выработать достаточно тепла для отопления дома, размер площади коллектора необходимо довести до 40÷45% от общей площади дома.

Вариант горячего водоснабжения и отопления от солнечного коллектора

Чтобы задействовать солнечный коллектор и для отопления, и для горячего водоснабжения, необходимо объединить в системе оба предыдущих варианта, и использовать для воды специальный бойлер с дополнительной емкостью , имеющей змеевик, через который циркулирует нагретый солнечной батареей теплоноситель. Благодаря тому, что внутренний бак намного меньше основного, вода в нем нагревается от змеевика гораздо быстрее и отдает тепло в общую емкость .

Коллектор может быть включен в общую систему "отопление - горячее водоснабжение"

Коллектор может быть включен в общую систему «отопление — горячее водоснабжение»

Кроме этого, бойлер должен быть подключен к дополнительному источнику нагрева — это может быть газовый или электрический котел, или же теплогенератор на твердом топливе.

Нестабильность температуры, которую создает солнечная батарея, может способствовать перегреву теплоносителя или, наоборот, слишком быстрому его охлаждению в контурах отопления и водоснабжения. Чтобы этого не произошло, вся система должна управляться автоматикой. В разводку устанавливается контролер температуры, который может или перенаправлять потоки теплоносителя, или включать или выключать циркуляционные насосы, или производить иные управляющие операции.

Электронный блок-контроллер

Электронный блок-контроллер

В представленной выше схеме такой температурный контроллер обозначен, как регулятор.

Итак, со схемами подключения (обвязки) в общих чертах ясность есть. А вот теперь имеет смысл рассмотреть несколько вариантов самостоятельного изготовления солнечных коллекторов.

Цены на солнечные коллекторы

Солнечный коллектор из шланга или гибкой трубы

Те, кто имеет частный дом с огородом или дачу , конечно же знают, что вода, оставшаяся во временных легких магистралях после полива грядок, быстро нагревается. Это положительное качество шлангов или гибких труб и использовали народные умельцы, создавая из них солнечные теплообменники. Нужно отметить, что такой коллектор обойдется во много раз дешевле купленного в магазине, но, чтобы процесс изготовления прошел успешно, нужно приложить некоторые усилия.

На крыше - целая батарея из солнечных коллекторов

На крыше — целая батарея из солнечных коллекторов

Такой коллектор может состоять из одной или нескольких секций, в которые укладываются и закрепляются плотно свернутые по спирали «улиткой» шланги.

"Улитка" - теплообменник

«Улитка» — теплообменник

Такую конструкцию можно назвать самой простой как по конструкции, так и по монтажу. Главным недостатком ее можно назвать то, что ее практически нельзя использовать без применения принудительной циркуляции, так как при слишком больших длинах контуров труб гидравлическое сопротивление превысит силу напора, создаваемую разницей температур. Однако, решить вопрос с установкой циркуляционного насоса – совсем несложно. И такая система, установленная в загородном доме, станет отличным подспорьем и быстро окупится, включая и расходы (совсем незначительные) на электропитание насоса.

Используются подобные коллекторы и для обогрева воды в бассейнах. Их подключают к системе фильтрации, которая обязательно оснащена насосом. Вода, циркулируя по трубам коллектора, успевает нагреваться перед поступлением в бассейн.

В некоторых случаях , создавая всю систему солнечной батареи, можно обойтись без установки накопительного бака. Это возможно тогда, когда горячая вода используется только в дневное время и в небольших количествах. Например, в контуре из 150 м трубы, имеющей внутренний диаметр в 16 мм, вмещается 30 литров воды. А если пять или шесть таких «улиток» из труб будет собрано в единую батарею, то в течение дня душ можно принимать по несколько раз каждому члену семьи, и горячей воды еще немало останется и на хозяйственные нужды.

Если у кого-то остались сомнения в эффективности такого подогрева воды, рекомендуем посмотреть видеоролик, в котором показано испытание коллектора из шлангов:

Видео: эффективность несложного солнечного коллектора
Материалы для изготовления

Чтобы сделать такой солнечный водяной коллектор, нужно подготовить некоторые материалы. Ничуть не исключено, что некоторые из них найдутся в сарае или гараже.

  • Резиновый шланг или гибкая пластиковая труба черного цвета, имеющая диаметр 20 ÷25 мм – это по сути главный элемент системы, в котором при циркуляции воды будет происходить теплообмен. Количество шланга будет зависеть от величины солнечной батареи — это может быть и 100, и 1000 метров. Черный цвет шланга предпочтителен тем, что он больше, чем все остальные оттенки, поглощает тепло.

Сразу же нужно отметить, что металлопластиковые трубы не особо подходят для изготовления коллектора, даже если их покрыть черной краской. Дело в том, что пластичность их в данном случае недостаточна — они заламываются при изгибах небольшого радиуса и тем самым , даже если не нарушается целостность стенок, уменьшится интенсивность тока воды.

Шланги продаются в бухтах по 50, 100 или 200 метров. Если планируется изготовить батарею большого объема , то придется приобретать несколько бухт. В том случае, если в каждой секция планируется использовать , к примеру 50 или 100 м шланга, то не стоит покупать целую 200-метровую бухту лучше приобрести готовый отмерянный шланг. Это поможет сэкономить время при монтаже.

Шланг может быть уложен не только по круглой спирали, но и овальной, а также в виде змеевика.

Бухты труб из сшитого полиэтилена РЕХ нужного черного цвета

Бухты труб из сшитого полиэтилена РЕХ нужного черного цвета

В качестве хорошей альтернативы можно попробовать и современные трубы из сшитого полиэтилена РЕХ. У них – неплохая пластичность, ну а как придать им черный цвет, если его нет в продаже – несложно придумать.

  • Если скат крыши, на которой будет устанавливаться коллекторная батарея, крутой, то для спиралей из шланга изготавливаются специальные короба — из брусков, фанеры или металлического листа. Для этого потребуется бруски 40×40 или 40×50 мм, фанера толщиной в 6 мм, или же металлический лист в 1,5 – 2 мм.

Заготовки будущего модуля обрабатывается антисептиком (дерево) или антикоррозийными составами (металл). Затем из них собирается короб на одну или несколько спиралей.

Часто используют старые ненужные оконные рамы

Часто используют старые ненужные оконные рамы

Кстати, в качестве бортиков короба можно использовать старые оконные рамы, на которые просто монтируется донная часть.

  • Для предварительной обработки металла и древесины необходимо приобрести антисептические, антикоррозийные и грунтовочные составы.
  • Шланги (трубы) будут испытывать немалые нагрузки и от массы теплоносителя, и от перепадов температур и внутреннего давления. Стало быть, они будут пытаться нарушить укладку, деформироваться, просесть, поэтому нужно предусмотреть специальные крепления для их поддержания в изначально заданном положении.

Это может быть металлическая полоса, которую закрепляют между трубами на саморезы.

Крепление витков металлической полосой

Крепление витков металлической полосой

Другой вариант — это свободная связка плотным шнуром или пластиковым хомутом-«галстуком» с крестовиной или поперечиной. Но в се-таки такой метод скрепления больше подходит для пластиковой трубы, нежели для шланга, так как он может при расширении резины провиснуть на шнуре. Если же для коллектора выбран армированный резиновый шланг, то этот способ вполне подойдет для фиксации.

Связка контура пластиковыми хомутами

Связка контура пластиковыми хомутами

Еще одним вариантом крепления, подходящим для пластиковой трубы или армированного шланга, могут стать гвозди с широкими шляпками. Они могут забиваться или в дно короба (в этом случае оно должно иметь толщину не менее 10 мм), или же на своеобразную крестовину, изготовленную из бруска.

  • Необходимо будет подготовить и соединительные элементы для шланга или труб. Разновидностей подобных фитингов — достаточно много, но нужно выбрать именно те, которые предназначены для выбранного для изготовления коллектора материала.

Кроме таких соединителей, потребуются резьбовые фитинги для перехода от пластиковой или резиновой трубы на общую металлическую. Такое соединение будет необходимо, если коллектор будет состоять из нескольких модулей.

Чтобы знать, сколько потребуется соединительных элементов, нужно заранее вычертить принципиальную схему создаваемой системы и просчитать их количество на ней.

  • Для объединения всех модулей в единую батарею потребуются два коллектора — отрезка металлической трубы. Через один из них, закрепленный внизу батареи, в теплообменники будет поступать холодная вода, а во втором, закрепленным сверху, будет собираться согретая.

Верхняя труба будет соединяться с накопительным баком, то есть идти к потребителю. Она должна иметь диаметр 40 ÷ 50 мм.

Монтаж батареи

Заготови в в се необходимое, можно приступать к работе.

  • Для начала нужно обработать антисептическим средством все деревянные части будущей конструкции.
  • Далее, если дно модулей будет изготовлено из металлического листа, его нужно покрыть антикоррозийным составом. Обычно для этого применяется мастика, предназначенная для покрытия днищ автомобилей.
  • После просыхания составов на подготовленных элементах, из них собираются одиночные или общие модули.
  • Затем в них укладываются шланги, для чего закрепляются держатели.
  • Для свободного прохождения труб через бортики модулей для них просверливаются отверстия — в верхней его части и нижней. Соответственно, в нижнее отверстие выводится труба входа холодной воды, а в верхнее – выхода подогретой.
  • Если монтируется несколько модулей по вертикали, или же один общий, в который укладывается несколько «улиток» трубы также , один над другим, то нижний конец каждой из спиралей соединяется с верхним выходом нижележащей – и по такому последовательному принципу коммутируется весь «столбец». Самый нижний конец соединяется с общим металлическим коллектором, через который будет поступать холодная вода. Таким же образом монтируются и все соседние вертикальные ряды – с общим подключение к подающему коллектору.
  • Соответственно, верхние концы шлангов самого верхнего горизонтального ряда модулей соединяются с металлической трубой-коллектором, по которой осуществляется отвод горячей воды на потребление.
  • Спиралевидный контур коллектора может монтироваться и на металлический лист, установленный не на крыше, а около дома, с южной его стороны, или около бассейна, если он требует подогрева. В этом случае металлическое основание будет способствовать более быстрому нагреву воды и сохранению тепла в трубах, так как имеет хорошую теплопроводность и теплоемкость .
  • Еще одним вариантом теплового солнечного коллектора может быть укладка контура на плоскости крыши в специальных коробах длинными параллельными рядами по всей длине кровли.
Цены на трубы из сшитого полиэтилена
Видео: простой солнечный коллектор с линейным расположением труб

Усиливаем эффект с помощью пластиковых бутылок

Применение пластиковых бутылок увеличивает производительность коллектора

Применение пластиковых бутылок увеличивает производительность коллектора

На рисунке показан солнечный коллектор из шлангов (труб), эффективность действия которого значительно увеличена за счет использования обычных пластиковых бутылок. В чем тут «фишка»? А их сразу несколько:

  • Бутылки играют роль прозрачного кожуха, и не дают воздушным потокам отбирать тепло во время абсолютно ненужного взаимного теплообмена. Мало того, воздушные камеры сами становятся своеобразными аккумуляторами тепла. Налицо – парниковый эффект, который активно используется в агротехнике.
  • Округлая поверхность бутылки играет роль линзы, усиливающей эффект солнечных лучей.
  • Если нижнюю поверхность бутылки простелить отражающим фольгированным материалом, то можно добиться эффекта фокусировки лучей в зоне прохождения трубы. Нагрев от этого только выиграет.
  • Еще один немаловажный фактор. Пластиковая прозрачная поверхность в какой-то мере снизит разрушающее негативное воздействие ультрафиолетовых лучей, который ни резина, ни пластик «не любят». Такой контур должен прослужить дольше.

Для изготовления такого солнечного коллектора понадобятся:

Совсем несложная схема коллектора, подходящего для дачных условий

Совсем несложная схема коллектора, подходящего для дачных условий

1 – Резиновый шлаг, металлические или пластиковые трубы черного цвета – в качестве теплообменника.

2 – Пластиковые бутылки, которые станут кожухом вокруг труб контура.

3 — В бутылки, в их половину, которая будет прилегать к основанию, может быть вложена фольга или иной отражающий материал. Отражающая часть должна смотреть в сторону солнца.

4 – Подставку будет совсем несложно смонтировать из бруска или металлической трубы.

5 — Накопительный бак для нагретой воды, который должен быть связан с точкой забора — кран, душ и т.д .

6 — Емкость для холодной воды, которую можно связать с системой водоснабжения.

Монтаж солнечного коллектора

Сборка варианта, показанного на верхней схеме, производится следующим образом:

  • Для начала из металлической трубы или бруска монтируется подставка. Если она изготавливается из дерева, то оно должно быть покрыто антисептическим составом, если же из металла, то его необходимо обработать антикоррозийным средством. Нужно просчитать длину так, чтобы между двумя стойками устанавливалось ровное число бутылок.
  • На стойки, на расстоянии ширины бутылок, закрепляются горизонтальные планки, на которых можно будет сделать дополнительное закрепление для змеевика. Кроме этого, они предадут каркасу дополнительную жесткость .
  • Далее, подготавливается нужное количество пластиковых бутылок — с них срезается донная часть таким образом, чтобы одна бутылка стороной горлышка плотно встала в получившееся отверстие.
  • Берется шланг (труба) необходимой длины , которой будет достаточно для укладки контура-змеевика на уже готовом каркасе-подставке.

Отступив от края шланга 100 ÷ 150 мм, делают отметку места его закрепления. Затем через этот край на трубу надевается необходимое количество подготовленных бутылок, которого будет достаточно, чтобы полностью закрыть участок до противоположной стойки. Бутылки устанавливаются плотно одна к другой, таким образом, чтобы горлышко второй входило в отверстие, вырезанное в дне предыдущей.

  • Когда участок трубы для укладки верхнего участка змеевика будет полностью закрыт коробом из бутылок, ее край закрепляется сверху на левой стойке каркаса. Для крепления можно использовать клипсы-держатели для пластиковых труб с защелкой , нужного размера.

Далее, с помощью такой же клипсы свободный от бутылок участок трубы закрепляется на противоположной, правой стойке.

  • Если есть необходимость положение бутылок корректируется, так, чтобы фольгированная их половина оказалась снизу, у каркаса коллектора.
  • Затем трубе придается плавный поворот, и она снова защелкивается на клипсу .
  • Следующим этапом на трубу снова надеваются бутылки, и она закрепляется уже на левой стойке. Такую последователь соблюдают и дальше, пока вся рама не будет заполнена змеевиком коллектора.
  • Теперь осталось только «запаковать» фитинги, через которые будет осуществлена врезка получившегося коллектора к подаче холодной воды и к накопительной емкости горячей.

Такой коллектор, как видно, абсолютно не сложен в изготовлении, но зато может стать хорошим «помощником» в частном доме, взяв на себя функции подогрева воды.

Кстати, солнечную энергию можно использовать не только для подогрева воды, но и для подачи в помещения нагретого воздуха. Например, как изготовить самостоятельно солнечный воздушный коллектор , можно узнать, если перейти по ссылке на специальную публикацию нашего портала.

Как сделать солнечный коллектор для отопления своими руками: пошаговое руководство

Василий Боруцкий

Удорожание традиционных источников энергии побуждает собственников частных домов подыскивать альтернативные варианты обогрева жилья и нагрева воды. Согласитесь, финансовая составляющая вопроса отыграет не последнюю роль при выборе отопительной системы.

Один из наиболее перспективных способов энергообеспечения — преобразование солнечного излучения. Для этого задействуют гелиосистемы. Понимая принцип их устройства и механизм работы, сделать солнечный коллектор для отопления своими руками не составит большого труда.

Мы расскажем вам о конструктивных особенностях гелиосистем, предложим простую схему сборки и опишем материалы, которые можно задействовать. Этапы работ сопровождаются наглядными фотографиями, материал дополнен видео-роликами о создании и вводе в эксплуатацию самодельного коллектора.

Принцип работы и конструкционные особенности

Современные гелиосистемы — один из видов альтернативных источников получения тепла. Они применяются в качестве вспомогательного отопительного оборудования, перерабатывающего солнечное излучение в полезную владельцам дома энергию.

Они способны полностью обеспечить горячее водоснабжение и отопление в холодное время года только в южных регионах. И то, если занимают достаточно большую площадь и установлены на открытых, не затененных деревьями площадках.

Несмотря на большое количество разновидностей, принцип работы у них одинаковый. Любая гелиосистема представляет собой контур с последовательным расположением приборов, и поставляющих тепловую энергию, и передающих ее потребителю.

Основными рабочими элементами являются солнечные батареи на фотоэлементах или солнечные коллекторы. Технология сборки солнечного генератора на фотопластинах несколько сложнее, чем трубчатого коллектора.

В этой статье мы рассмотрим второй вариант — коллекторную гелиосистему.

Для чего нужен солнечный коллектор

Коллекторы представляют собой систему трубок, соединенных последовательно с выходной и входной магистралью или выложенных в виде змеевика. По трубкам циркулирует техническая вода, воздушный поток или смесь воды с какой-либо незамерзающей жидкостью.

Циркуляцию стимулируют физические явления: испарение, изменение давления и плотности от перехода из одного агрегатного состояния в другое и др.

Как можно сделать солнечный коллектор своими руками

Сбор и аккумуляция солнечной энергии производится абсорберами. Это либо сплошная металлическая пластина с зачерненной наружной поверхностью, либо система отдельных пластин, присоединенных к трубкам.

Для изготовления верхней части корпуса, крышки, используются материалы с высокой способностью к пропусканию светового потока. Это может быть оргстекло, подобные полимерные материалы, закаленные виды традиционного стекла.

Устройство солнечного коллектора

Надо сказать, что полимерные материалы довольно плохо переносят влияние ультрафиолетовых лучей. Все виды пластика имеют достаточно высокий коэффициент теплового расширения, что часто приводит к разгерметизации корпуса. Поэтому использование подобных материалов для изготовления корпуса коллектора стоит ограничить.

Вода в качестве теплоносителя может применяться только в системах, предназначенных для поставки дополнительного тепла в осенне/весенний период. Если планируется круглогодичное использование гелиосистемы перед первым похолоданием техническую воду меняют на смесь ее с антифризом.

Как сделать воздушный гелиоколлектор

Если солнечный коллектор устанавливается для обогрева небольшого строения, не имеющего связи с автономным отоплением коттеджа или с централизованными сетями, сооружается простейшая одноконтурная система с нагревательным прибором в начале ее.

В цепочку не включают циркуляционные насосы и нагревательные устройства. Схема предельно проста, но работать она может лишь солнечным летом.

При включении коллектора в двухконтурное техническое сооружение все гораздо сложнее, но и диапазон пригодных для применения дней существенно увеличен. Коллектор обрабатывает только один контур. Преобладающая нагрузка возлагается на основной отопительный агрегат, работающий на электроэнергии или любом виде топлива.

Как правильно сделать солнечный коллектор своими руками

Несмотря на прямую зависимость производительности солнечных приборов от количества солнечных дней, они востребованы, и спрос на солнечные устройства стабильно повышается. Популярны они среди народных умельцев, стремящихся направить все виды природной энергии в полезное русло.

Классификация по температурным критериям

Существует достаточно большое количество критериев, по которым классифицируют те или иные конструкции гелиосистем. Однако для приборов которые можно сделать своими руками и использовать для горячего водоснабжения и отопления, наиболее рациональным будет разделение по виду теплоносителя.

Так, системы могут быть жидкостными и воздушными. Первый вид чаще применим.

Кроме этого часто используют классификацию по температуре, до которой могут нагреваться рабочие узлы коллектора:

  1. Низкотемпературные. Варианты, способные нагревать теплоноситель до 50ºС. Применяются для подогрева воды в емкостях для полива, в ванных и душевых в летнее время и для повышения комфортных условий в прохладные весенне-осенние вечера.
  2. Среднетемпературные. Обеспечивают температуру теплоносителя в 80ºС. Их можно использовать для обогрева помещений. Эти варианты наиболее подходят для обустройства частных домов.
  3. Высокотемпературные. Температура теплоносителя в таких установках может доходить до 200-300ºС. Используются в промышленных масштабах, устанавливаются для обогрева производственных цехов, коммерческих зданий и др.

В высокотемпературных гелиосистемах используется довольно сложный процесс передачи тепловой энергии. К тому же они занимают внушительное пространство, чего не может позволить себе большинство наших любителей загородной жизни.

Процесс изготовления их трудоемок, реализация требует специализированного оборудования. Самостоятельно сделать подобный вариант гелиосистемы практически невозможно.

Можно ли сделать солнечные батареи своими руками

Собственноручное изготовление коллектора

Изготовление солнечного прибора собственными руками — увлекательный процесс, приносящий массу выгод. Благодаря ему можно рационально применять бесплатное солнечное излучение, решить несколько важных хозяйственных задач. Разберем специфику создания плоского коллектора, поставляющего в отопительную систему нагретую воду.

Материалы для самостоятельной сборки

Наиболее простой и доступный материал для самостоятельной сборки корпуса солнечного коллектора — деревянный брусок с доской, фанерой, плитами ОСП или подобными вариантами. В качестве альтернативы можно применить стальной или алюминиевый профиль с аналогичными листами. Металлический корпус обойдется несколько дороже.

Материалы должны соответствовать требованиям, которые предъявляются к конструкциям, используемым на открытом воздухе. Срок эксплуатации солнечного коллектора варьируется от 20 до 30 лет.

А значит, материалы должны обладать определенным набором эксплуатационных характеристик, которые позволят использовать конструкцию в течении всего срока.

Корпус солнечного коллектора сделан своими руками

Если корпус выполнять из дерева, то долговечность материала можно обеспечить путем пропитки водно-полимерными эмульсиями и покрытием лакокрасочными материалами.

Основным принципом, которым следует руководствоваться при проектировании и сборке солнечного коллектора, является доступность материалов в отношении цены и возможности приобрести. То есть, их можно либо найти в свободной продаже, либо самостоятельно изготовить из доступных подручных средств.

Нюансы устройства теплоизоляции

Для предотвращения потерь тепловой энергии на дно короба монтируется изоляционный материал. Это может быть пенопласт либо минеральная вата. Современная промышленность выпускает достаточно обширную номенклатуры изоляционных материалов.

Для утепления короба можно использовать фольгированные варианты утеплителей. Таким образом можно обеспечить и теплоизоляцию и отражение солнечных лучей от фольгированной поверхности.

Если в качестве изоляционного материала используется жесткая плита пенопласта или пенополистирола, для укладки змеевика или системы труб можно вырезать канавки. Обычно абсорбер коллектора укладывается на теплоизоляцию сверху и накрепко фиксируется к днищу корпуса способом, зависящим от использованного в изготовлении корпуса материала.

Схема для изготовления солнечного коллектора своими руками

Теплоприемник солнечного коллектора

Это абсорбирующий элемент. Он представляет собой систему труб, в которых происходит нагрев теплоносителя, и деталей, выполненных чаще всего из листовой меди. Оптимальным материалов для изготовления теплоприемника считаются медные трубы.

Домашние мастера изобрели более дешевый вариант — спиральный теплообменник из полипропиленовых труб.

Абсорбер солнечного коллектора

Интересное бюджетное решение — абсорбер гелиосистемы из гибкой полимерной трубы. Для соединения с устройствами на входе и выходе применяются подходящие фитингиВыбор подручных средств, из которых можно изготовить теплообменник солнечного коллектора, достаточно широк. Это может быть теплообменник старого холодильника, полиэтиленовые водопроводные трубы, стальные панельные радиаторы и пр.

Важным критерием эффективности выступает теплопроводность материала, из которого изготовлен теплообменник.

Для самостоятельного изготовления оптимальным вариантом является медь. Она обладает теплопроводностью, которая составляет 394 Вт/м². У алюминия этот параметр варьируется от 202 до 236 Вт/м².

Солнечный коллектор с медными трубами

Однако большая разница в параметрах теплопроводности между медными и полипропиленовыми трубами вовсе не означает, что теплообменник с медными трубами будет выдавать в сотни раз большие объемы горячей воды.

При равных условиях производительность теплообменника из медных труб будет на 20% эффективнее, нежели производительность металлопластиковых вариантов. Так что теплообменники, изготовленные из полимерных труб, имеют право на жизнь. К тому же такие варианты обойдутся гораздо дешевле.

Вне зависимости от материала труб, все соединения как сварные, так и резьбовые, должны быть герметичны. Трубы можно располагать как параллельно друг к другу, так и в виде змеевика.

Схема по типу змеевика уменьшает количество соединений — это снижает вероятность протечек и обеспечивает более равномерное движение потока теплоносителя.

Верх короба, в котором находится теплообменник, закрывается стеклом. В качестве альтернативы можно использовать современные материалы, типа акрилового аналога или монолитного поликарбоната. Светопрозрачный материал может быть не гладким, а рифленым или матовым.

Чем закрыть плоский солнечный коллектор

Такая обработка снижает отражающие способности материала. Кроме того, этот материал должен выдерживать значительные механические нагрузки.

В промышленных образцах подобных гелиосистем используется специальное солярное стекло. Такое стекло характеризуется низким содержанием железа, что обеспечивает меньшие потери тепловой энергии.

Накопительный бак или аванкамера

В качестве накопительного бака можно использовать любую емкость с объемом от 20 до 40 литров. Подойдет ряд несколько меньших по объему резервуаров, соединенных трубами в последовательную цепочку. Накопительный бак рекомендовано утеплять, т.к. нагретая на солнце вода в емкости без изоляции будет быстро терять тепловую энергию.

По сути, теплоноситель в отопительной гелиосистеме должен циркулировать без аккумуляции, т.к. полученную от него тепловую энергию нужно расходовать в период получения. Накопительная емкость скорее выполняет функцию распределителя нагретой воды и аванкамеры, поддерживающей стабильность давления в системе.

Схема гелиосистемы с бойлером

Этапы сборки гелиосистемы

После изготовления коллектора и подготовки всех составляющих конструкционных элементов системы можно приступать к непосредственному монтажу.

Сборка собнечного коллектора своими руками

Работа начинается с установки аванкамеры, которую, как правило, размещают в самой высокой из возможных точке: на чердаке, отдельно стоящей вышке, эстакаде и т.д.

При монтаже следует учесть, что после заполнения жидким теплоносителем системы, эта часть конструкции будет иметь внушительный вес. Поэтому следует убедиться в надежности перекрытия или усилить его.

После установки емкости приступают к установке коллектора. Этот конструкционный элемент системы располагают на южной стороне. Угол наклона относительно линии горизонта должен составлять от 35 до 45 градусов.

После установки всех элементов их обвязывают трубами, соединяя в единую гидравлическую систему. Герметичность гидравлической системы является важным критерием, от которого зависит эффективная работа солнечного коллектора.

Сборка гелиосистемы для нагрева воды в душе

Для соединения конструктивных элементов в единую гидравлическую систему используются трубы с диаметром дюйм и полдюйма. Меньший диаметр используется для устройства напорной части системы.

Под напорной частью системы понимается ввод воды в аванкамеру и вывод нагретого теплоносителя в систему отопления и горячего водоснабжения. Остальная часть монтируется при помощи труб большего диаметра.

Для предотвращения потерь тепловой энергии трубы следует тщательно изолировать. Для этой цели можно использовать пенопласт, базальтовую вату либо фольгированные варианты современных изоляционных материалов. Накопительная емкость и аванкамера также подлежат процедуре утепления.

Наиболее простым и доступным вариантом теплоизоляции накопительной емкости является сооружение вокруг нее короба из фанеры или досок. Пространство между коробом и емкостью следует заполнить утепляющим материалом. Это может быть шлаковата, смесь соломы с глиной, сухие опилки и пр.

Схема сборки солнечного нагревателя

Испытание перед вводом в эксплуатацию

После монтажа всех элементов системы и утепления части конструкций можно приступать к заполнению системы жидким теплоносителем. Первоначальное наполнение системы следует производить через патрубок, расположенный в нижней части коллектора.

То есть, наполнение осуществляют снизу в верх. Благодаря таким действиям можно избежать вероятного образования воздушных пробок.

Вода или другой жидкий теплоноситель поступает в аванкамеру. Процесс наполнения системы заканчивается тогда, когда из дренажной трубы аванкамеры начинает литься вода.

При помощи поплавкового клапана можно отрегулировать оптимальный уровня жидкости в аванкамере. После наполнения системы теплоносителем он начинает нагреваться в коллекторе.

Процесс повышения температуры происходит даже в пасмурную погоду. Нагретый теплоноситель начинает подниматься в верхнюю часть накопительного бака. Процесс естественной циркуляции происходит до тех пор, пока температура теплоносителя, который поступает в радиатор, не выровняется с температурой носителя, выходящего из коллектора.

При расходе воды в гидравлической системе будет срабатывать поплавковый клапан, находящийся в аванкамере. Таким образом, будет поддерживаться постоянный уровень. При этом холодная вода, поступающая в систему, будет находится в нижней части емкости накопителя. Процесс перемешивания холодной и горячей воды практически не происходит.

В гидравлической системе надо предусмотреть установку запорной арматуры, которая будет препятствовать обратной циркуляции теплоносителя из коллектора в накопитель. Это происходит в том случае когда температура окружающей среды опускается ниже, чем температура теплоносителя.

Такую запорную арматуру, как правило, используют в ночное и вечернее время.

Подводку к местам потребления горячей воды осуществляют при помощи стандартных смесителей. Обычные одинарные краны лучше не использовать. В солнечную погоду температура воды может доходить до 80°С — пользоваться такой водой напрямую неудобно. Таким образом, смесители позволят существенно сэкономить горячую воду.

Производительность такого солнечного водонагревателя можно повысить путем добавления дополнительных секций коллекторов. Конструкция вполне позволяет монтировать от двух до неограниченного количества штук.

Гелиосистема из соединенных солнечных коллекторов

В основе такого солнечного коллектора для отопления и горячего водоснабжения лежит принцип парникового эффекта и так называемый термосифонный эффект. Парниковый эффект используется в конструкции нагревательного элемента.

Солнечные лучи беспрепятственно проходят через прозрачный материал верхней части коллектора и преобразуются в тепловую энергию.

Тепловая энергия оказывается в замкнутом пространстве благодаря герметичности короба секции коллектора. Термосифонный эффект используется в гидравлической системе, когда нагретый теплоноситель поднимается вверх, при этом вытесняя холодный теплоноситель и заставляя его двигаться в зону нагрева.

Как работает обычный солнечный коллектор

Производительность солнечного коллектора

Основным критерием, который влияет на производительность гелиосистем, является интенсивность солнечного излучения. Количество падающего на определенную территорию потенциально полезного солнечного излучения называется инсоляцией.

Величина инсоляции в разных точках земного шара варьируется в достаточно широких пределах. Для определения средних показателей этой величины существуют специальные таблицы. Они отображают среднюю величину солнечной инсоляции для того или иного региона.

Среднестатистические показатели инсоляции

Кроме величины инсоляции на производительность системы влияет площадь и материал теплообменника. Еще одним фактором, влияющим на производительность системы, является объем накопительного бака. Оптимальная емкость бака рассчитывается, исходя из площади адсорберов коллектора.

В случае с плоским коллектором это общая площадь труб, которые находятся в коробке коллектора. Эта величина, в среднем значении, равняется 75 литрам объема бака, на один м² площади трубок коллектора. Накопительная емкость является своеобразным тепловым аккумулятором.

Цены на заводские приборы

Львиная доля финансовых затрат на сооружение подобной системы приходится на изготовление коллекторов. Это не удивительно, даже в промышленных образцах гелиосистем около 60% стоимости приходится на этот конструкционный элемент. Финансовые затраты будут зависеть от выбора того или иного материала.

Надо отметить, что подобная система не в состоянии отопить помещение, она лишь поможет сэкономить на затратах, помогая подогреть воду в системе отопления. Учитывая довольно большие затраты энергии, которые расходуются на нагрев воды, солнечный коллектор, интегрированный в систему отопления, существенно снижает подобные издержки.

Гелиосистема в автономной системе отопления

Для ее изготовления используются довольно простые и доступные материалы. К тому же подобная конструкция является полностью энергонезависимой и не нуждается в техническом уходе. Уход за системой сводится к периодическому осмотру и очистке стекла коллектора от загрязнений.

Дополнительная информация по организации солнечного отопления в доме представлена в этой статье.

Выводы и полезное видео по теме

Процесс изготовления элементарного солнечного коллектора:

Как собрать и ввести в эксплуатацию гелиосистему:

Естественно, самостоятельно сделанный солнечный коллектор не сможет конкурировать с промышленными моделями. Используя подручные материалы, довольно сложно добиться высокого КПД, которым обладают промышленные образцы. Но и финансовые затраты будут гораздо меньше по сравнению с приобретением готовых установок.

Тем не менее, самодельная солнечная система отопления существенно повысит уровень комфорта и сократит расходы на энергию, которая вырабатывается традиционными источниками.

Имеете опыт в сооружении солнечного коллектора? Или остались вопросы по изложенному материалу? Пожалуйста, поделитесь информацией с нашими читателями. Оставлять комментарии можно в форме, расположенной ниже.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *